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1. INTRODUCTION

Consider the problem of generating the three-dimensional structure

of a biological cell by the use of an electron microscope. Any single

electron micrograph reveals the cell in only two dimensions. In order

to generate a three-dimensional picture, the depth of various structures

in the ell has to be determined. The method by which information in

depth is obtained is by use of relative perspective. The cell is tilted
*-'

with reference to the electron beam in order to generate parallax.

However, due to the mechanics of electron microscopy, the relative tilt

angle over which this information can be collected is limited, typically

less than 90 degrees. The problem is how to generate a three

dimensional structure from incomplete information in one direction.

This is a typical example of an inverse problem. More generally,

:' :' inverse problems are characterized by the collection of incomplete

information or observations concerning a signal and partial constraints

on the class of solutions containing the original signal. In recent

years inverse problems have become increasingly important; not because

. they are new problems, but because both the analytical tools and

S.. computational means to solve these problems have become available. As a

second example, consider the following generic problem. Given an

experiment that allows only the partial observation of a data set, say

an interval of a signal, extrapolate this signal to obtain data values

outside the initial observation interval.

In [11, Gerchberg considers a problem in which the observation

consists of an interval of the Fourier transform of a signal. In order

NO..
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to increase the spatial resolution beyond what the observational band-

limit would apparently support, an iterative technique that combines

implicit, or 'a priori information.' with the original observations is

employed to extrapolate the signal. In this way, he was able to extend

the band-limit of the observations thus increasing the resolution of the

data set (super-resolution). Since that time, the idea of

incorporating a priori information in order to improve the information

content of a signal has proliferated. Similar problems exist in a

variety of disciplines: radio astronomy, remote sensing and electron

microscopy are examples. The specific problem considered in this work

is one that arises in computer-aided tomography (CAT) [2]. In brief,

tomography consists of reconstructing an image from a set of projections

collected over 180 degrees, sometimes referred to as a complete

perspective. A projection is an integral transformation from two-

dimensional image space to one-dimensional function space. An x-ray

photograph is a common example of a projection. The problem considered

here is how to reconstruct and/or enhance an image when only a subset of

these projections is available, perhaps those spanning only 45 degrees

instead of 180 degrees. The limited perspective provided by the

incomplete projection data is akin to the problem of estimating the

range of distant targets with only a short baseline over which to

triangulate. Note, however, that relative cross-range or azimuth

positions are easily obtained from the observations on a short baseline.

In this work, the reconstruction/enhancement problem is posed as a

spectral extrapolation problem. By improving the spectral information

content through the inclusion of a priori knowledge, and combining this

with the original observation data, final image quality is improved.
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- A goal of this work is to develop algorithms that will generate

higher quality images than those obtained by employing only the observed

data. The key problem is to develop a technique that allows the

incorporation of various sources of information from different domains.

Examples of this type of information include band or spatial limits,

specific function values or averages, non-negativeness and shape or size

restrictions. The two algorithms developed in this work incorporate

these various constraints by iteratively transforming between different
*.- -.

domains in which the information can be included. After each

transformation, constraints are imposed reducing some measure of error

in the data set. In Chapter 3 the reconstruction/enhancement techniques

are derived and discussed. In the examples provided the relative

trade-offs between techniques are shown and the degree of image

recovery possible is illustrated. One of the important features of

these algorithms is their relative insensitivity to noise. In one

. example, with only 35% of the data and a 20 dB signal-to-noise ratio, a

..reconstruction is obtained that allows nearly complete identification of

. . the image.

A key component in these reconstruction/enhancement techniques is

spectral extrapolation. A major problem with the iterative

extrapolation techniques employed in this work is their peculiar

convergence behaviour. Since these problems have a direct influence on

" the quality of the reconstructions obtained in the tomographic

algorithms, it is important to understand their behaviour. In Chapter 2

some iterative extrapolation techniques are studied in order to obtain a

*qualitative understanding of their convergence properties. It is shown

tl Iq
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that as a consequence of finite length processing intervals, i.e.,

finite number of samples of a signal or filter, these iterative

techniques obtain a distinct minimum error point, and then with more

iterations, converge to a fixed point that represents a larger error

than the already passed optimal value. In Chapter 2 some results are

established for determining when the best solution is obtained and what

factors affect the quality of this solution.
I.

The fourth chapter considers an interpolation problem :esent in

synthetic aperture radar (SAR). Although this work * somewhat i
disconnected from the previous two chapters, it served as the original

motivation for much of this work. The conclusion of this thesis will

comment on the relationships between SAR and the material presented in

chapters two and three. In (SAR) [3], the objective is to generate an

image of a scene, usually of terrain, by illuminating the scene with

microwave radiation and coherently processing the reflected signals.

One of the key problems in developing a real-time digital processor to

accomplish the processing task is a data reformatting operation. This

operation usually takes the form of a polar-to-rectangular

interpolation. In this work, a method is proposed for circumventing

polar-to-rectangular interpolation. A 'smart' sampler is used to obtain

samples on a keystone (4] raster instead of a polar raster. A nearest-

neighbor interpolation scheme is then used to obtain the samples on a

rectangular grid. In Chapter 4, this technique is discussed and a

mathematical model is proposed. The last half of this chapter is .1
concerned with the verification and testing of this model.

4%
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In tis thesis, each chapter begins with an introduction of the

subject, followed by a presentation of the fundamental concepts as they

apply to the problem under consideration. After the concepts and

notation have been established, a review of the pertinent liturature is

presented and briefly discussed. The last portion of each chapter

presents new work and ideas, followed by experimental verification and

" " * examples.

.i *
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2. ITERATIVE BAND-LIMITED EXTRAPOLATION

In this chapter the effects of finite processing intervals on

iterative techniques for deterministic spectral extrapolation are

discussed and two specific methods are analyzed. The term 'finite

length processing interval' refers to the finite number of data samples

or filter coefficients that can be stored and/or manipulated by a

realizable machine in finite periods of time. Since in any practical

application these restrictions apply, it will be seen that these effects

determine the performance of certain types of algorithms. These

techniques are deterministic in the sense that known data are considered

to be an observation of a unique, deterministic signal. The

extrapolation attempts to approximate the original signal in the sense

of a norm rather than with some statistical measure. It will be shown

that in some cases an exact extrapolation is possible and in other cases

a minimum-norm least-squares solution is either obtained or approached.
tmu

The goal of this chapter is to qualitatively characterize the properties

and numerical behaviour of various extrapolation techniques under the

influence of finite length processing intervals. This knowledge is then

used as an aid in determining the optimal manner in which to apply a

given technique in order to obtain the 'best' solution.

Three topics will be discussed in this chapter. First, Papoulis'

algorithm will be analyzed and shown to be a contraction mapping for any

finite length processing scheme. Theoretical results of this work will

be used to characterize the properties of the fixed point solutions,

i.e., the iterative solution. The next section will take a slightly

p -
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different track in analyzing these algorithms. Here, the errors

p. introduced by finite length processing intervals (finite records) will

be examined in detail to derive an equation bounding the induced error.

In the last section, some computer experiments are provided to support

] and demonstrate the theories presented in this work. It is convenient

to start with a general review of modern deterministic spectral

extrapolation techniques.

Although this chapter considers iterative techniques almost

exclusively, it must be noted that there exists a large class of non-

iterative methods. Of these non-iterative techniques only a few will be

specifically discussed in this chapter. A comprehensive comparison

between iterative and non-iterative methods is available in a paper by

%. %.Huang et al. [5].

2.1 Some Iterative and Non-iterative Techniques

Gerchberg [1] presents an iterative algorithm for deterministic

spectral extrapolation. The object of this extrapolation is to improve

the spatial resolution obtainable from Fourier observations that are

" diffraction limited (in frequency). By extrapolating the spectrum,

frequencies above the diffraction limit are recovered and then used to

improve the resolution of the target -- i.e., super-resolution. The

basis for this technique is that a spatially limited object has an

analytic Fourier transform; in fact, the FT is an entire function. A

basic theorem of complex variables states any finite interval of an

analytic function uniquely determines the whole function [6]. Since the

diffraction limited observations provide an interval of this entire

; "2 "
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function, it is theoretically possible to recover any desired portion of

the complete function.

Gerchberg's algorithm is illustrated in Figure 2.1. Starting with

F0(ja), the available observation of F(jw), and T the known spat'ial

limit, an initial approximation is made to the unknown part of the

spectrum. Denote this guess as F'O(jw). Next the inverse Fourier

transform of F10 (jw) is found generating fl(t). Clearly f'I(t) is a

better approximation to f(t) than fl(t) because the erroneous signal

outside v has been removed. By use of a Fourier transform, F'(jw) is

obtained from f'l(t). The process of substituting F0 (jw) into Fl(jw)

generating F'1 (jw) reduces the error in the spectrum a second time.

This iterative process is repeated, reducing the error in two steps

until a satisfactory result is obtained.

The dual of spectral extrapolation is spatial or time extrapolation
ft".

in which an interval of the time domain signal is known and a band-limit

in the frequency domain is available. The basis of solution in this

problem is that a band-limited, finite energy signal has a uniformly

convergent Taylor series approximation. Given any interval of the time

signal, in theory it is possible to calculate all the derivatives around

some point in the known interval, to generate the Taylor series and to

calculate the unknown function to arbitrary accuracy for any point in

time. Papoulis [7] discusses this variation of Gerchberg's algorithm

and presents some theoretical results including a proof of convergence

to the unique solution. This proof is based on the repeated application

of Parseval's relation. Essentially the same proof can be used to show

convergence of Gerchberg's algorithm. Either of these techniques can be

... . . . . . ............... .
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implemented in one domain by observing that the process of transforming

to the opposite domain, truncating to a known time or band-limit and

transforming back is equivalent to convolving with a low-pass filter in

the original domain. This is illustrated for Papoulis' algorithm in

Figure 2.2 where the switches realize the substitution procedure. It

should be pointed out that both Papoulis' and Gerchbergs's algorithms

are special cases (see Sanz and Huang [8]) of an iterative method for

the solution of Fredholm integral equations of the first kind. This

technique was first proposed by Landweber in [9].

Sn-ii

Vo

GATE ""
0_ J

Figure 2.2 Papoulis' algorithm.
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- Using operator notation, Papoulis' algorithm can be expressed as

-n g 90 + (2.1)

where B represents the low-pass filter and operator BL zeros, or time

' "limits, the appropriate interval of the low-pass filtered signal so S0

can be substituted. The subscript n denotes the iteration count.

A non-iterative extrapolation technique proposed by Sabri and

Steenaart [101 involves the use of an extrapolation matrix. This

omatrix, is obtained by solving the difference equation (2.1) for gn

in terms of go, i.e.,

gnh= Ang0  (2.2)

.-"where

n.- I

3 AZ , H=D (2.3)

i=O
4

. As Sabri and Steenaart point out, because Papoulis' algorithm converges

and equations (2.2) and (2.3) are an alternate realization of (2.1), the

solution obtained from the A n matrix will also converge as n approaches

infinity.

A second non-iterative technique was proposed by Cadzow [11]. This

technique is essentially a two-step algorithm. The first step, which

Cadzow recognizes as the most difficult step, involves the solution of a

Fredholm integral equation of the first kind (see above discussion). In

the second step, the solution to the Fredholm integral equation is low-

Ipass filtered to obtain the final result. That Sabri's and Cadzow's

methods are very similar has been the topic of significant debate in

.. -the literature [12,13,141.

P . '-2'I.
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There is, however, a significant problem with either the iterative

techniques of Papoulis and Gerchberg or the non-iterative methods of

Sabri and Cadzow. The assumption of a continuous model for the Fourier

and time (spatial) domains is the primary cause of these diffficulties.

The first problem is that the data used and the calculations employed
-. ,

' must be discrete. Because the data are sampled, the analyticity or

Taylor series arguments presented earlier are no longer valid. As a

result, a unique solution no longer exists (in general). In fact, an

infinity of solutions is available. A second problem is that the ideal

filtering implied in (2.1) cannot be implemented. This is because only

a finite number of samples (either of the signal or filter coefficients)

can be stored and manipulated. These finite record length effects

further degrade the performance of the algorithm. These comments are

also relevant to non-iterative techniques because an extrapolation

matrix of only a finite size can be manipulated, and only a finite

number Hi terms could be calculated and included. The point of this

work is to qualitatively characterize the effects of finite records and

finite iterations on the performance of Papoulis' and Gerchberg's

algorithms, and consequently, on similar techniques.

Jain and Ranganath [15] were the first to assume a discrete model

for the extrapolation problem. One of their results was to show that

that discretization of Papoulis' or Gerchberg's algorithms results in

convergence to the minimum-norm least-squares solution (NLS). This

result further implies that this solution is obtained from Papoulis'

algorithm only in the infinite record case. In order to circumvent the

finite record length problem, Jain and Ranganath phrased the

.. ,. ,., .. ,. . ..... ... ....-.... ".... "....."....... .......... ',.'... ,... , ,. '
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extrapolation problem in terms of linear algebra. The 2M+1 point

. extrapolation solution vector g. is found in terms of a generalized

matrix inverse and the 2L+1 point observation vector go. Denoting the

.. signal from which the observation is obtained as fo, the observation go

can be represented as

0 Sfo (2.4)m.so -Sfo.

where the S matrix is 2L+l x , with sii =1 -L iSL and sij -0 for all

other ioj. This operator selects a subsequence of fo as the

observation. Assuming that f0 is a band-limited sequence, Bf0  = f0"

then

to -O SBf0" (2.5)

In (2.5), B consists of samples of the low-pass operator where

sin [ 0 (i-j)] (2.6)
bij n( -P ' -

Denote by SL the operator that extrapolates the 2L+I long vector with an

infinite number of zeros, i.e., SL is x 2L+1 and s =1 . -LjijL. Then

solving (2.5) for f0 via a generalized inverse, we obtain

* - BS(B)g 0, (2.7)

which of course is the MiLS solution to (2.5) or (2.4). In (2.7) the

truncated operator BL is as defined in (2.6) for i,j such that -L(i<L,

~-L.Jj L.

An iterative algorithm lain and Ranganath propose is

zL (1ly)z + ZL - (I)BLzL 1, (2.8)'n = z0  zn- 1  n- z0=g0

.I BMz n  (2.9)

.

"' ; ..S 2 - ' . . ; . " . ; , . . ' . ' . ' ' ' '; ; , ' ' . # ") " - - - ' - " - ' ' ' ' , " - ' - " - " - " - + - " - . " '
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which also converges to the MNLS solution. In (2.8), zL  is a dummy• n

vector 2L+1 x 1, that the algorithm iterates on. The final solution (to

the desired number of samples 2M+l) is obtained after (2.8) converges,

by low-pass filtering zL As with equation (2.7), this is a well-known
n °

linear algebra result. Details of the derivation can be found in [16].

The point of (2.7), (2.8) and (2.9) is that the best obtainable solution

is the MNLS result. This is a consequence of the discrete nature of the

data and implementations. As pointed out earlier, an infinite number of

solutions exist in the sampled data case. These various algorithms

(Papoulis, Sabri, Cadzow and lain) simply converge to different

solutions. A reason that these different techniques converge to

different solutions results from the underlying models assumed for the

various techniques. This is explained in more detail by Huang and Sanz

in [17]. Huang and Sanz (181 also point out that the discrete and

continuous models are conceptually well-unified. A major emphasis of

this chapter is to identify the effects of finite record lengths on the

solutions generated by discrete realizations of Papoulis' and

Gerchberg's algorithms.

-2.2 Fixed Point Analysis

In this section Papoulis' algorithm will be analyzed in terms of a

contraction mapping. It will be proved that the finite record

implementation of Papoulis' algorithm is a contraction mapping and

consequently has a unique fixed point. The behaviour of the algorithm

with respect to this fixed point will then be studied to establish some

%i bounds on the error and convergence properties The underlying model is

'.4
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the continuous-continuous model discussed in [17]. This implies that go

. .is a subset, i.e., an observation, of samples of a continuous signal.

The objective of the extrapolation is to generate samples of the

continuous signal outside the observation interval. This is the assumed

model throughout this chapter. The system to be analyzed is represented

by the difference equation

n = 9O + L B gn (2.10)
n 5 0 n-1

where M represents the record length, n the number of iterations, gM is

a 2)1+1 x 1 vector and the matrix BL (=[I-DL]) is 2M+1 x 2M+1 where the

NJ matrix DL consists of dii =1, for i, -LiJL and dij=0 for all other i.j.

The matrix BM was described earlier and is 2M+1 x 2M+1. Lastly, go is

extended with sufficient zeros to be consistent with the rest of the

equation. By defining a substitution operator T and interval IT (where

needed, k will denote individual elements of a vector)

g0(k) for -LkL, i.e., k E IT
STx(k)] (2.11)

U '.x(k) for k(-L or k>L, i.e., k 4 I-
* * . 0-.

equation (10) can be written as

M TBM gM gM0. (2.12)

The objective now is to prove that the mapping T M  is a contraction

mapping for all values of M. If this is true, then a unique fixed point

".' will exist for all finite values of M.

.

-. °°

-, - , - ,4, , " , , , . ' ' ' ., .-, , . . ., -.. • . . , . . . ., . .-, .- . ., - , .. , , , ., ., . , .



7.

16

2.2.1 Notation and definitions

In the following discussion, the symbol [[*[[ denotes any valid

norm in the space under consideration. The spaces will be subsets of RM

or R for vectors and RMxM or R7x4 for operators. For the operator

spaces, 11011 will denote the induced norm [19]. Clearly for the Re and

cases this norm must exist in the sense of convergence in order to

have a complete space. In all cases a linear space, a Banach space,

will be assumed. Much of the literature [19,20] on contraction mappings

and fixed point theorems use the symbol d(*,*) to denote a measure of

distance (or energy). To be consistent with this notation, d(e, *) will

be used in conjunction with 1I*I1 where

d(x,y) = Ilx-yll, x,y e R. or r" (2.13)

and

. d(x,0) = llxll, x e RM or R7. (2.14)

Two definitions needed pertain to contraction and non-expansive

.5-. mappings. Let A be a normed linear space and C contained in A. The

mapping 0: C -> A is a contraction mapping if there exists a constant y,

0T(yl such that for all x,y C C

d(Gx,Gy) * yd(x,y). (2.15)

Based on this definition is the Contraction Mapping Theorem: If G is a

contraction mapping on a closed subset C contained in a complete linear

space A, then there exists a unique fixed point x. e C, i.e. Gx,=x.. In

addition, the sequence xn= Gxn converges to x* for any initial point x0

E C and
L. •

'5 . . . . o - -. ' " . - - . - - - - . - , - ,. - .' . . - . - - , - . . - • - - . . . %
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"nd(z x0)

d(x*,'Xn) < 1 (2.16)

A less restictive mapping which allows y to be equal to 1 is known as a

non-expansive mapping. These mappings may have multiple fixed points as

opposed to the uniqueness property of contraction mappings. Letting A

q be a normed linear space and C contained in A, the mapping H: C -> A is

,non-expansive if for all x.y e C

d(HxHy) . d(xy). (2.17)

If strict inequaltiy holds in (2.17) for all x,y f C x~y, then H is

strictly non-expansive in which case one or more fixed points may exist.

In order to guarantee that only one exists, the image of C under H must

-. be compact [20]. For this case H has a unique fixed point and x~ =

HxnI converges to x. for all x0 e C [20].

. ;2.2.2 Fixed point analysis for Papoulis' algorithm

Denote the Banach space containing finite energy sequences as S.

These finite energy sequences may be infinite in extent, x e S which is

contained in 41 1, or of finite extent, x 
M e SM contained in RM . Denote

" _ the subsets of S!' and SM containing finite energy band-limited sequences

byS"an
- S S and respectively where 0 represents the band-limit. The first

step in proving BM to be a contraction mapping is to show that B is

non-expansive.

Theorem 1: B: CC S-> So is a non-expansive mapping for all x,y C

gal* S l

* .- - .._ so+.
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. Proof: Let x,y e S , x0y. Clearly Bx=x and By=y. Thus

d(BxBy) = d(x,y) < d(xy) (2.18)

. which is the definition of a non-axpansive mapping. Now let x,y C SO

x~y. In this case Bx=xD and By=y', implying that x',y' 8 Sm Consider
Q*

... the Fourier transforms of the sequences x and x' (the following argument

also holds for y and y')

x = x(k) <-) X(ej")

x'= x(k) <-> X'(eJ).

Since the signals x and y are low-pass filtered, x is band-limited to D1

< and

.zX(ej,) 12dw > IX, (ej ()12dw (2.19)

_7T

because X'(eJW)=X(ejW) for -D..w. and X(e j ) is non-zero outside this

interval. By Parseval's relation

Ix'Ol < llxil (2.20)

or

IlBxIl < llx'l1 (2.21)

and the same holds for y and y'. For xy 4 S there exists a z S"

such that x-y=z. Substituting into (2.20) and (2.21)

d(Bx,By) IlBx-Byll lIB(x-y)ll = IIBzII < llzll. (2.22)

Since

lizil = ll--yll d(xy)

we obtain

k.%...........................--.......
,, . -. *.*--. - -;*. ,... . -.. -.-.•. . ,-.---- . .+- ''*'-. .-...- .-. . ..* ++= +'. .. .,.°+-'... ...- %2- . . " -,
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d(Bx,By) < d(xy). (2.23)

Thus for all x,y f So, B is a non-expansive mapping. QED.

Theorem 2: IIBMxMII < IIBxMII, xM C SM, BM C RMxM and B C RWx  for

all xM =0

Proof: BMxM yM C SM, BxM=y e S- and y=yM over the 2M+1 points on

the central interval denoted by IM and define y equal to zero outside

SIM . Further, y is non-zero over some interval outside IM.  Therefore

S -[yMII < lyll or

,yMI= [IBMxMII < IIBxMII = Hiyll. (2.24)

QED.

Theorem 3: IIBII = 1.

Proof: Let x,y e S. Since B is non-expansive (Theorem 1)

d(Bx,By) _. yd(xy) for jl (2.25)

* or
%'%

I IB(x-y)II I yIx-yII, y7_i. (2.26)

Since we also know that

IIB(x-y) II & I IBII I Ix-yII (2.27)
implies that IIBI < 1. Next consider x C So, then Bx=x or

lIBxl= IIxl. Since IIBxII < IIBII Jlxil and IjBxII = i[xIl, the

implication is that [IBII 21. This coupled with IIBiI < 1 implies that

IIBII = 1 for all x S. QED.

Theorem 4: IIBMII < 1.
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Proof:

IIBMxMKII I IBMJII IixI1 (2.28)

From Theorem 2:

IIBMxMII < IIBxMll. (2.29)

and

IIBMxMII < IIBxMII < IIBII xMII (2.30)

implies that

IIB XMI<IAI1. (2.31) Le

The only way for (2.29) and (2.30) to be consistent is for IIBMII < 1.

The next to last step in proving that Papoulis' algorithm as

described in (2.11) is a contraction mapping is to prove that BM is a

contraction mapping.

Theorem 5: B: M - S is a contraction mapping for all xM  S

Proof: Let xM, yM e SM . There exists a zM such that xM = zM.

From

IIBMzM . IIBrIl 1z11, (2.32)
M M

and substitution of z =xM-y

IBzlI I IIBM(xM-yN)II < IIMIII IIxM-yl I IIBMII IIzMII (2.33)

is obtained. Applying the definition of d(*,*) and using y = JIBMII < i

(Theorem 4),

, , . . . . . .° • . °o . • .
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IIBM(xM-yM)II I d(BMxM,BKyM) -yd(xM,y) I IBMII I IzM-yII • (2.34)

The above meets the definition of a contraction mapping, therefore, BM

is a contraction mapping. QED.

. "It is quite easy to show that the substitution operator T, equation

. (2.11), is a non-exapansive mapping. The proof will be omitted from

this work. Combining this fact with the contraction mapping properties

of BM it is easy to show that TBM is a contraction mapping.
Ip

. Theorem 6: TBM is a contraction mapping for all xM e sm .

Proof: Let xM,yM Q SM and xM YM, Q SM . Denote BMxM as X1 and BY

as -s Then

A d(T MTB(Tx Ty) < d(xM,y) (2.35)

because T is non-expansive. By definition of the contraction mapping

* property of BM, (Theorem 5)

d(xM,yM) = d(BMxM,BMyM) yd(xMyM), y<i. (2.36)

Clearly then

d(TBxM, TBMyM) < yd(xM,yM ), y<1 (2.37)

and TBM is a contraction mapping. QED.

Since the mapping TBM describing the discrete implementation of

Papoulis' (and equivalently Gerchberg's) algorithm is a contraction

mapping, a unique fixed point exists and the following theorem can be

stated.

- Theorem 7: The iterative algorithm

mMgMM M M (2.38)

n n-1

'".

, .o .- .,.- ............................................................................................................................. "
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will converge to a unique fixed point g for any g e SM . Further, the

M Merror between 9. and gn is bounded by

Y nd(gl,gO) (2.39)

Proof: Since TBM is a contraction mapping, by the Contraction

Mapping Theorem, a unique fixed point exists; further, the error is

determined by equation (2.16) or equivalently by (2.39). QED.

Some comments are in order concerning the above statements. First,

(2.39) is only a conservative bound on the error. In the next section a

tighter bound is derived. Second, the fixed point to which (2.38) -.

converges is a function of g0 , not of any initial guess over the unknown

intervals in the extrapolation. This property isd a necessary

requirement of the fixed point theorem. Two factors that affect the -:

solution are the band-limit, 91, and the record length employed, M. In

section 3 of this chapter, effects of the band-limit will be ex5..ined

and discussed. To conclude this section, the effects of M on the

solution and behaviour of Papoulis' algorithm will be qualitatively

studied.

That the value of M determines whether B is a contraction or non-

expansive mapping would indicate M has some effect on the fixed point

itself. Since Papoulis' algorithm is guaranteed only to converge to the

MNLS solution with infinite records, the implication is that for finite

records, the solution is sub-optimal (in the sense that the XLS

solution is optimal). The next theorem states that IIBTMI approaches

1l1l as the record length goes to infinity. This fact is used to infer

that SM approaches the NILS solution (g.).

.- - . -.- -.-... , -. ..- . . . . .. . . . . . . -. . .. . . .. . . . . . . . . . ,. , -



23

Theorem 8:

lin I IBII I IBI ( (2.40)

Proof: Since IIBII =1. "ax-l together with IIB'O < IIBII implies

< 1 because SM IIBMII. By definition of norm equivalence, twomax

norms ill and 1l0lib are said to be equivalent if and only if there

exist two positive numbers a and P such that

-J dlxi < ~xI~ . hh~lafor all xes7* (2.41)
cL' 1x -

Consider now the 12 induced norm on SexW:

22a
-.4. nl = axlAeA) i / 2  (2.42)

s ,. For

U b... s inL( i- i)  (2.43)ij 7f 1 i-j ).

11B11 1 2 exists. This could be inferred also from the fact that B is

non-expansive. Further, since for any s there exists an X such that

"i < a, for some iQ.M (2.44)
1 'TJ

IIBM111 defined by (2.42) for i, -Mji<M converges uniformly. By

S2

employing the concept of norm equivalence, IIBMII also converges

. uniformly to 1-IiBIi. Because BM is positive definite, all the

eigenvalues, I' for i-l,..,M are distinct and 0<X i < IIBMII for all

i1l,..,M. Further, %M converges uniformly to 1ax I. QED.
.4 ~.max

. N Consider equation (2.37) with y-IIBMII. Clearly, as M approaches

infinity IIBMII approaches IIBII and y goes to 1 implying that the

mapping becomes non-expansive as opposed to being a contraction.

Theorem 8 also implies that gM approaches ge as M goes to infinity.

4 O,-o
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The result is that the error associated with the fixed point decreases

as the record length, M, increases. Further, the error bound

established by (2.39) indicates that as M gets large and consequently Y

approaches 1, the convergence is slower. Combining these two facts,

qualitative error curves such as those illustrated in Figure 2.3 can be

sketched. These error bounds are very conservative and do not identify

specific sources of error. What this bound does establish is that as M

gets large, the fixed point for equation (2.10) or (2.12) approaches the

fixed point for equation (2.1), i.e., the NNLS solution. In the next

section a tighter and more descriptive error bound is derived that

identifies specific sources of error.

2.3 Error Analysis of Papoulis' Algorithm

In order to derive a more descriptive error bound, the sources of

error need to be identified and accounted for in some manner. Clearly,

one source of error is the fact that an infinite number of iterations

can never be realized. Consequently, an error term accounting for this

component can be identified. As discussed in the previous section, a

second obvious source of error is caused by the finite records employed.

These two error terms will be defined and bounds found on their

respective contributions to the total error.

To achieve this analysis, two cases will be considered. In the

first case, the vector g0  is considered to be a subset, i.e., an

observation, of samples of a continuous, band-limited, periodic signal

f(t). In the second case, go is an observation of samples of a finite

-- . .. ..... -. ... .
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energy, band-limited contiuous signal f(t); this case will be referred

to as the general case. As discussed earlier, this model is the

continuous-continuous case presented in [17]. An equation will be

derived that bounds the error for the general case. The error bound for

the periodic case will be shown to be a special case of the non-periodic

solution.

2.3.1 Notation and definitions

Define TEN as the magnitude of the total error between gn of (2.10)

n n

and the MNLS solution obtained from (2.7). As before, superscripts

will denote record lengths and subscripts will represent iterations.

The error TEX is bounded by the sum of two terms. Referring to Figuren

2.4 , let En represent the error between S and g n i.e., the difference• n n

between equations (2.10) and (2.1). Another interpretation of EM is
n

that it represents the error caused by a record length of M after n

iterations have been performed.

• ... .... *

" 0n

-q*0* 1

TEn
Figure 2.4 Definition of error terms.

.- . ... . . . .*o* . '* : N
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Error remaining by performing only a finite number of iterations with

infinite record lengths is denoted by En. This term represents the

error between gn and S (the NNLS solution). It should be noted that

this is not the same as the error bound of equation (2.39). In (2.39)

the bound is between the fixed point for (2.12) implemented with a

record length of M and the result of (2.12) after n iterations. Summing

" 'the above two error terms:

T E + En. (2.45)

-U- n- n

Some asymptotic properties of these terms are now considered. Since EM

n

is the error caused by using finite records, as the record length

approaches infinity, EM should approach zero, i.e.,
~. n

lim = 0. (2.46)i i K-->

If E denotes the error remaining after completing a finite number of:.) n
%j

iterations (with infinite records), then

Slim En  0. (2.47)
n - >w

.. .." Equations (2.46) and (2.47) imply

lim lim TE 0 (2.48)

n->- K->

These equations represent necessary requirements that any bound on the

total error must satisfy.

'I."

• -*

.4.

S. o
°,1

4- -".- -'-", . % , . . . . - . - . . " .. ,.. -.. '""N. ,,' 
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2.3.2 Derivation of error equations

Restating Sabri and Steenaart's extrapolation matrix solution to

-. 4.(2.1)

gn= Aug 0  (2.49)

where A is given in equation (2.3). This represents the infinite

record case and, consequently, An is - x - and the Su are - x 1. For

finite records, (2.1) becomes (2.10), and (2.3) is modified to account

.'- for the finite records as

S. =X (HM)ig0  M (2.50)n Ano"

i=O

In this case, the extrapolation matrix AM is M x M and the vectorsgnn

are K x 1. Since the extrapolation matrix

A = lir (H)i (2.51)
" i~lln-> "i=O m

does not exist (lain [15]), the symbol A will instead be used to

represent the pseudo-inverse extrapolation matrix that obtains the NNLS

solution (equation (2.7)). Using this notation

g= Ago0  (2.52)

where the dimensions of A, and go are dependent upon the number of

points desired in the extrapolation.

First, a bound on the error term EM will be found. As in then

previous section, error will be defined as the norm of the difference

between the two terms under consideration. "rom the previous

definition, EM is expressed as
U

", 5 ', " " * '""? ,. * .tt4 4, "" 4' "" " . '" " "* . . - ". " ."-".. " .'•" "" "' "- + . . '.""4 
' +

" -4.." "4 " . " . " 4' """4"
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EM = IIg -gnI (2.53)n n n"

V If gis padded with sufficient zeros after M terms, then" -n

i': EM (2.54) "
n E IDgn-gn]11 + I gnI1"  (2.54).

The motivation for this decomposition is to isolate the error in the '6U

extrapolation interval (record length) from the error outside this

interval. Substituting (2.49) and (2.50) into (2.54) gives

EM < IIDM[AMs 0 Ang 0]II + 11B MAng 0 11 (2.55)

or

g E-- IDMAn-AnII + IIDMAnI II 0 ll. (2.56)

It is easy to demonstrate that (2.56) meets the necessary requirements

of (2.46). As M approaches infinity the first term on the right-hand

side of (2.56) goes to zero. By the properties of DN, as M approaches

infinity the norm of DNAn goes to zero.

Next, a bound on En is found. This term represents the error

remaining after completing a finite number of iterations with infinite -.-

records. By definition,

E = Il1n-7 ,II.  (2.57)

.* Substituting (2.49) and (2.52) into (2.57) gives

-. En = II[A -A.]g 01 (2.58)

or

En IIAn-A.lI 11goI. (2.59)

Since lain proved that (2.1) goes to the WNLS solution as n approaches

-*' infinity, then En must go to zero, thereby satisfying the necessary ""1

i4n
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requirement of (2.47).

An equation bounding the total error can now be formed. Combining

the results of (2.56) and (2.59) into (2.45) generates:

TO~ j [IDM[AX-A n]II + IIJBM Ani+InwI]gI. (2.60)

n+-"

Since the components of (2.60) satisfy their respective necessary

conditions, then the above inequality must satisfy the requirements of

(2.48).

Inspection of the terms in (2.60) indicates that the error is a
a..-

function of M, 0 and n. An important feature of (2.60) is that the

relationships between TE and the various parameters are independent of
n

the signal from which gO is an observation. This is important in the

'-a , sense that properties established for one f(kt) (and thus g0 ) are

essentially the same for any f(kt). It will be assumed that f(kt) is

scaled such that the norm of g0 is equal to one. However, it should be

noted that TEN is not independent of the observation length. This is
n

represented by L and by reference to the definitions of H and HM (eq.

(2.3)), its inclusion in TEM can be identified.
n

An error bound for the periodic case is easily derived from (2.60).

In most cases involving periodic sequences, the record lengths available

for processing are substantially longer than the periods involved.

Consequently, since ideal filtering can be accomplished (or simulated),

AN and A are identical. Since there is no information lost outside the='. " .n n -

processing interval due to truncation, the second term of (2.60) is also

Wrl zero. The error equation is then simply

K 4 4

%I

A'~LA *.A. ~-2~ PJ.a %:." : *< ~ - 1
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TEn < 1IAn-A II = En" (2.61)

The error in this case is due solely to the finite number of iterationsiM

performed and is the E term of (2.60); EM is zero for the periodic

case. Equation (2.61) indicates that with infinite records the error

_ Uwill approach zero as n goes to infinity. Clearly, infinite record

length processing is only possible with periodic signals. Therefore,

when periodic signals are being extrapolated, a solution as accurate as

desired is obtainable. But this result has been well-known for quite

some time and, reasonably enough, considers extrapolation of a periodic

signal as an interpolation problem.

2.3.3 Discussion of theoretical results

The motivation behind (2.60) and (2.61) is to obtain some

qualitative information concerning the error generated by finite

records. Equation (2.60) contains two competing factors. Error

remaining after a finite number of iterations with infinite records (En

-: , decreases to zero monotonically with increasing n. In fact, because

Papoulis' algorithm is a gradient technique, this error is decreasing

with at least linear convergence [151]. Opposing this factor is the EMn

term. As the number of iterations increases, error due to finite

records is increasing from zero. Some comments about the rates of

increase and decrease will be made later. Another interpretation

concerning EM is that the iterates g and g are diverging from each

other. Increasing the record length would slow this divergence, i.e.,

cause n to increase at a slower rate. Note that En is independent of

I 
I'

*%, * N*e*.. f~~~inS*
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- M. In Figure 2.5 the dotted line represents E and the dashed lines

represent EM for different M. The sum of these curves is plotted as the
n

solid lines.

The most distinctive feature of these curves is the minimum. These

curves indicate that the best solution in terms of a norm is obtained

with a finite number of iterations. A larger record length results in a

better solution at the cost of more iterations. Another prediction of

(60) is that a larger observation interval will uniformly shift the TEM
n

curves downward. Assume for the moment that EM is constant with respect
n

",' "to L. It is easy to show that for any n, increasing L forces En. to be

uniformly shifted down. Adding this lower E curve to the assumed
n

constant EM curves results in a downward shift of the TE curves. If E

is not assumed to be constant, it seems reasonable in light of the

effects of M on EM, that a larger L will cause to grow more slowly.
e c oot aa r w cg M m

This would apply an additional downward shift to the TE - curves. The

effects of altering the extrapolation bandwidth are discussed with the ro

experimental results.

Some additional comments are in order concerning the rate of

Mdivergence between an and gn. In Papoulis' algorithm, a sequence is

filtered in a non-ideal m~nner thus generating some error. This

sequence plus error is then returned to the input and processed a second

time generating error on both the original sequence and the feedback

error. A difference equation can model this as:

V -

.. ; s(n) as(n-l) + J, s(-l)=0 (2.62)

where the coefficients a and determine the stability and limits

.- ,. respectively. The general solution to this equation is

o 2j

., "
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s(n) = -(1-a'+l). (2.63)
1-aL

Obviously if a is greater than 1, s(n) diverges to infinity, otherwise

s(n) approaches A/(-a). Since the process representing u in Papoulis'

algorithm is the low-pass operation, which in the previous section was

demonstrated to be at least non-expansive, and in the truncated

implementation, a contraction mapping, a is less than 1. The

coefficient A represents the amount of noise injected into the processed

sequence with each iteration (assumed constant for a given M). The

curves plotted in Figure 2.5 are obtained with this model of EM: the
n

error between gM and g n. As M approaches infinity, both the constant
en n

amount of noise injected with each pass is reduced (A gets smaller) and

gM diverges from gn at a slower rate (a goes to one). These combine to

generate a lower asymptotic error. The last comment is consistent with

the theory put forth in the previous section concerning the effects of

M.

The sum effect' of M on the total error as a function of n follows. __

As M increases, a distinct minimum error value is obtainable which

decreases with increasing M. At some, perhaps large, value of M the
...- , 1M

rate of error increase of E' is matched by the decreasing error of En n

* and the distinct minimum is no longer present. For M even larger than

this value, g, asymptotically approaches g.. The iterates, for this

large value of M approach gM, not g,.

::.:, -:

. .'.

*O1"
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2.4 Experimental Results

In this section, experimental evidence is presented to support the

-" - - theory discussed in the two previous sections. To this end, two cases

are considered. The first case is the periodic case and the second is

-the non-periodic situation. All error plots are the 1, norm of the

difference between either g and f(kt) or g5 and go for the periodic and
nan

non-periodic cases respectively. In the non-periodic situation, go is

the MNLS solution.

The ideal signal, f(t), is illustrated in Figure 2.6. A periodic

or non-periodic interval of this sequence is used depending upon the

case under study. From this interval, a sub-interval is used as the

observation. For example, in the periodic case 512 points of the

sequence are used as the ideal waveform. An observation of length 2L+1

is constructed by zeroing all points except those between -L and L. In

the general case, 600 points of f(kt) are the original sequence and the

observation is constructed in the same way as for the periodic

observation.

2.4.1 Periodic case

In the periodic case considered, the sequence used is that

described above with L=200 and Q = 0.115 radians. An issue is whether

* "the algorithm implemented with circular convolution and a version

.~; ; ~ realized with an FFT will produce the same results. The reason for

questioning this fact is that it was felt that the cumulative affects of'.., ...

92 4q

4 o "
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round-off error after a large number of iterations may cause some

3! divergence in the results generated by the two implementations. Figure

• -2.7 illustrates the error curves for these two realizations; they are

identical. To achieve these results, the same filter must be

implemented with both circular convolution and the FFT method. The

periodic impulse response coefficients for the convolutional technique

are obtained from the inverse discrete Fourier transform of an ideal

discrete low-pass filter. Circularly convolving with these coefficients

is then the same as the implicit periodic processing achieved by the

FFT. Both techniques simulate infinite record length processing if the

periods are chosen correctly. Consequently, there are no finite record

length errors and the remaining error is due solely to the lack of

performing an infinite number of iterations, En. This supports equation

(2.61) and the assumed behaviour of infinite record length processing.

2' "A consequence of finite register length effects, sampling and the

choosen Q, the E curve must ultimately level off, enter a limit cycle

or even start to increase. If the algorithm is correctly implemented

" " .-' this will not occur until after a large number of iterations. The

result illustrated in Figure 2.8 indicates that this leveling off does

not occur until at least 3000 iterations. Further, this curve

demonstrates the linear convergence assumed for this type of algorithm,

i.e., Papoulis' with infinite records. Figure 2.9 illustrates the

results after 60 and 3000 iterations. The improvement is quite evident,

* 'although the cost may be prohibitive.

'dI
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2.4.2 General case

Experimental results for the general case will now be presented.

Since evidence has been presented supporting the E curve and the
n

related theory, if further evidence supports the expected TEN curves,

nnthen it would be reasonable to assume correctness for the proposed E

theory and curves. Previously demonstrated was the expected fact that

the convolutional and FFT approach would yield identical results.

Therefore, for manipulative ease, a convolutional approach will be used

- * in the examples for the general case.

First, the effects of changing the observation interval will be

"' -' examined. As discussed in section 3, longer observation intervals (L)

will uniformly shift the TEM curves downward. The result is that the

coptimal solution is obtained with the same number of iterations and the

optimal total error is lower. In the cases illustrated in Figure 2.10,

the observation window length is: 150, 125, 100, 75 and 0 = 0.115

radians. The plots of Figure 2.10 verify the predictions of (2.60).

The critical test of (2.60) is verification of the expected

behaviour of TEN with respect to the record length M. Observationn

length experiments have supported the general shape of the curves, but

further evidence is needed to verify the effects of M. It was predicted

that as N increases, the error in the optimal solution would decreaseINS

but more iterations would be required to obtain this lower error.

'." Values of M used are: 150, 175, 200, 225 for L = 100 and 0 = 0.115

radians. The error curves illustrated in Figure 2.11 verify the
Spsi

theoretical predictions of equation (2.60). In Figure 2.12 is the

e4

!-".
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extrapolated signal at the optimal error point, 13 iterations, and near

V, the fixed point obtained after 60 iterations. While the signal obtained

after 60 iterations appears 'bigger' than that after 13 iterations, the

solution at 13 iterations is the best in terms of a norm. Small phase

shifts that our subjective evaluation is insensitive to are identified

and illustrated by calculating the norm. If either were to be employed

as an estimate of an unknown signal, that obtained with 13 iterations

would have to be selected. Additional experiments were performed to

further verify the relationship between record length and error. The

'. "" specific issue of concern is that the error curves of Figure 2.11 should

level out (because of the existence of a fixed point) and further, that

as M increases, the error associated with this fixed point should

decrease. For this experiment the values of M employed are: 150, 175,

200, 225 and 250 for L=150 and w=0.115 radians. Error plots for this

case are illustrated in Figure 2.13. A number of features need to be

identified in this set of curves. First, the error curves between 0 and

60 iterations are simply shifted (down) versions of the curves in Figure

2.11. This agrees with the theoretical predictions that longer

observation lengths will produce lower error. Second, as M increases,

the optimal error decreases and the number of iterations required to

" obtain this optimal error increases. This result is identical to both

theory and the results of the previous experiment. Third, the error

curves are converging to a constant error which corresponds to the fixed

"* ." point for that value of M. As M increases, the error associated with

,% "this fixed point decreases and the convexity of the error curves

decreases. It was predicted that for a sufficiently large value of M,

there is no minimum error point, i.e., the convexity of the error curve

-. 2~ . L .-.- .-
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vanishes. This feature has not yet been observed experimentL!'y. Some

Ifurther comments concerning this will be made later. Lastly, while the

oscillatory nature of the curves is not predicted in this analysis, it

is not unexpected, and further, the distinct maximum error point for

- Leach M is anticipated as illustrated in Figure 2.5.

Curves in Figures 2.11 and 2.13 indicate that a distinct minimum

" - error point does exist and that this error is obtained after a

relatively small number of iterations. Small is used in the sense of

the number of iterations required to approach the fixed point.

-- l Next the effects of varying the extrapolation band-width, Q, will

be studied. After some thought it becomes apparent that 21 is not

". necessarily the least upper bound of frequencies contained in the

observation. There are two reasons for this. First, it would not be

desirable to choose an 0 so tight as to disturb sidelobe behavior around

•" the higher frequencies. If the sidelobes are sufficiently affected, the

mainlobes could be seriously distorted. This distortion could result in

an inconsistent data set and consequently, a non-existent solution. The

effect on the iterative algorithms would be to cause a constantly

increasing error (increasing without bound).

An explanation for the second reason is more involved. The model

. employed here was presented earlier by Schaefer et al. in [21] and

lately discussed by Sanz and Huang in [22]. Denote the observation of

f(n) with the vector x(n) for n=0.... ,L-l. Because any extrapolation of

- . x(n) approximating f(n) must be of finite extent and can therefore be
0. )4

treated as periodic (implicitly at least) there exists a discrete

Fourier series such that

0 4
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x(n) = X(k)e N K0  ON (2.64),2i.

k=-KO

where X(k) represent the Fourier series coefficients. The extrapolation

problem can now be rephrased as: Given an observation set x(n),

calculate the Fourier series coefficients X(k) that generate x(n). Thus

by knowing the X(k), f(n) can be recovered. Rewriting (2.64) in vector

notation,

x= WX (2.65)

where x is L x 1, W is L x 2K0+1 and X is 2K0+1 x 1. The desired

solution of (2.65) is X given x. Clearly, for an observation length of

L, if 2K0+1 is strictly less than L, then (2.65) is an underdetermined

system of equations and a solution may not exist. The implication of I

this for Gerchberg-Papoulis type algorithms is that if for a given

- observation set, 0 is choosen too low, then the iterations will

immediately diverge. An obvious problem is that the minimum

, .extrapolation bandwidth required by (2.64) may be too high to be of any

practical value. A method of circumventing this is to apply various

decimation/interpolation [23] schemes to the observation set to alter L

as well as to vary N in order to achieve a more useful band-limit.

Independent of the factor determining the lower bound for 11, it is

desirable to get as close (from above) to this value as possible. If a

is significantly higher than necessary, either too much spectral energy

- is allowed to leak out of the mainlobes (of interest), or the system of

equations is too unconstrained allowing too many solutions. In either

case, the result will be a solution inferior to that obtainable with a

' -' , . - - " F - • ' ' - - - ,. ., . - . . , '", . , . , . .- . - g .'
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tighter band-limit.

The point of the above arguments is to suggest that an optimal

• "- extrapolation bandwidth exists. This value of 11 will be a function of

many factors, L, M, N and the properties of the observation for

-. instance. The net effect of 11 on the error curves should be as follows.

If 10 is below some critical value, an inconsistent data set is generated

and a solution may not exist implying that the iterations will diverge.

As 0 is raised above some critical value, the resultant optimal solution

will become gradually worse as the number of possible solutions

" n' I increases. The experimental results in Figure 2.14 are for M=200. L=100

and varying 0 between 0.1075 and 0.1200. These curves support the

existence of an optimal extrapolation bandwidth.

With reference to a previous remark concerning the inability to

achieve a constantly decreasing error plot for sufficiently large M, the

above analysis supplies a possible reason for this problem. Since L was

held constant while M was increased (for the experiments in Figures 2.11

and 2.13), a larger class of solutions was admitted, thus degrading the

quality of any one solution. In order to correct this problem, the

-sampling density in the known observation interval would have to be

increased, thus reducing the degrees of freedom for the system of

. " equations and improving the solution. Since this was not done, the

VA errors caused by the lack of constraint swamped the benefits of longer

record length.

*** >*.. .. .. . . . v . . .... . .. ",,i .-. . .- . . , . .21.. . .-
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I:"-. 2.5 Conclusion

For the sake of brevity, only one example has been illustrated in

this chapter. To date, over 20 different signals have be employed and

tested in varying detail. Results of these experiments have in every

case supported the theory presented in this chapter.

The purpose of the analysis in this chapter is to study the effects

of finite length processing intervals on iterative signal extrapolation

- techniques. The key results are: 1) The discrete implementations of

Gerchberg's and Papoulis' algorithms can be rephrased as fixed point

problems in which the effect of employing finite length processing

intervals in these algorithms is to make the mapping a contraction

mapping. A property of a contraction mapping is that it has a unique

. fixed point, implying that these algorithms converge to a specific

solution. 2) A second consequence of finite length records is that in

general, these algorithms attain the best solution after a relatively

small number of iterations. As the examples have shown, the number of

iterations required to obtain this solution is approximately an order of

magnitude less than the number required to approach the fixed point. In

K .the next chapter, these results will be employed in analyzing the

performance of two-dimensional image reconstruction/enhancement schemes.

* IL
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3. THE MISSING CONE PROBLEM IN COMPUTER TOMOGRAPHY

Computer-aided tomography (CAT) is a well-known technique for

obtaining high resolution cross-sectional images of an object from many

different angular views. X-ray tomography is probably the best known

type of CAT system due to its remarkable success in the field of medical

diagnostics. A typical x-ray CAT scanner may record as many as 600-800

projections taken at equally spaced angular increments over a total

viewing angle of 360 degrees. Data from the x-ray sensors are

digitized, stored in a digital medium and later processed into a final

image by one of several popular reconstruction techniques. Since

exposure to x-rays should be minimized, there is considerable interest

in generating high-quality images with a minimal amount of projection

data.

Reconstruction algorithms fall into three general categories: 1)

algebraic reconstruction techniques (ART), 2) convolutional-

backprojection (CBP) techniques and 3) direct Fourier (DF) domain

techniques. Although all of these have been used in commercial CAT

scanners with varying degrees of success, it appears that CBP is

currently the most popular in the present generation of machines. A

number of these algorithms are discussed in more detail in Section 1.

Many other remote sensing systems share the common problem of

attempting to reconstruct a high resolution object function from a

limited set of data recorded in the frequency domain, the spatial domain

or projection space. Examples are found in synthetic aperture radar,

beamforming sonar, electron microscopy and radio astronomy. In these
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systems it is often impossible to collect projections over an entire 360

degree viewing angle. For example, in a synthetic aperture radar, which

images an area on the earth's surface with a microwave radar carried in

a satellite, the total viewing angle may be quite small, perhaps on the

order of 15-30 degrees. In electron microscopy, the viewing angle is

limited by the extent that a specimem can be tilted with respect to the

electron beam. In some cases where x-ray CAT is used for non-

destructive testing of manufactured items, physical limitations prevent

the collection of 1rojections over a complete 360 degrees of angle.

Therefore, the problem frequently arises as to the best way to

reconstruct the image when an angular interval of projection data is

1*:: missing. This constitutes the missing cone problem which is addressed

-. in Section 2. Section 2 also discusses how maximum entropy methods and

algebraic reconstruction techniques have been used in the past to deal

with the missing cone problem.

Section 3 describes two recently proposed iterative reconstruction

algorithms that estimate the data in the unknown missing cone region and

then employ this data to improve the resolution of the reconstruction.

These algorithms are called the projection-slice algorithm (PSA) and the

angular iteration method (AIM). Essentially they are iterative band-

limited (space-limited) extrapolation algorithms which have been

modified to take into account problem dependent relationships that

result from the missing cone geometry.

Section 4 presents a number of computer generated examples to

O ' illustrate the salient features of the PSA and AIM algorithms.

Throughout this chapter, the missing cone problem is discussed within

.

V
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the context of x-ray tomography. However, since the missing cone

problem naturally arises in other imaging systems as metioned above, it

is hoped that new solutions to this problem will have important

applications in a variety of different disciplines.

3.1 Introduction to Computer Tomography

The purpose of this section is to review basic concepts, establish

notation and create the framework in which the missing cone problem is

discussed. An excellent general reference for tomography is provided by

G.T. Herman in (2].

3.1.1 Projection data

Projections, alternately referred to by some authors as

shadowgraphs, are the format of collected data in tomographic systems.

As illustrated in Figure 3.1, a projection is created by illuminating an

object from a source of penetrating radiation, typically x-rays. The

magnitude of the transmitted radiation is recorded on film or with

sensors and from these data a projection can be calculated. The

recorded signal intensity at a point on x' of a projection is related to

the incident radiation intensity I (x1) and the two-dimensional (2D)
0

attenuation f(x,y) of the object by

-Jf (x, y) dy'(.1 '

(3.1)
I(x') = I (x')e

where the y' direction is perpendicular to the projection and the

6.. * . - . a . - - - . . • q• . . ,• " • ,,
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integration is performed over a line parallel to y'. The projection,

p(x'), is then defined as the line integral over f(x,y),

pW) lf(x,y)dy'. (3.2)

This value can be obtained from 1(x') through the relation

p(x') = Jf(x,y)dy' = (n • (3.3)

In order to obtain the perspective necessary to uniquely

reconstruct f(x,y), projections are taken over a continuum of angle,

typically n radians. Generalizing, a projection is a bivariate function

of r and 0 where

p(r,0) = p0 (r) = f(rcose-vsinO, rsinO+vcose)dv (3.4)

and the rotated projection coordinates x',y' are replaced by a more

natural polar coordinate system. This projection operation is also

referred to as the Radon transform [24].

p(re) = Pt(r) = R[f(x,y)] (3.5)

The two slightly different notations of p(r,O) and pe(r) will be used to

emphasize the difference between operations on the two-dimensional (2D)

data set p(r,0) and calculations involving a specific projection PO(r).

Throughout this chapter, use of parallel beam projection data as

illustrated in Figure 3.1 will be assumed. It is shown later that this

assumption does not restrict the applicability of techniques to be

discussed here.

* *From a mathematical standpoint, the projections over the first n

radians are identical to those over the second n radians, i.e.,

-... .. .. .....
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p(r,O) = p(r,2nn+O) = p((-I)nr,nn+O) (3.6)

for n an integer. Since Radon's tranformation (3.4) is uniquely

invertible [25], projections over any continuous interval of n radians

unambiguously describe the image. In practice however, the effects of

- beam hardening, beam spreading and other non-symmetrical anomalies

disrupt the relationship of (3.6). Consequently, high-performance

tomographic scanners obtain projections over 2n radians in order to

reduce non-symmetrical effects. Since these non-symmetrical anomalies

are not considered here, projections over n radians will suffice.

,, .* Projections available over a radians will be referred to as a complete

" set of projections (a complete data set).

In any practical implementation, projections are sampled in both

i the angular and radial components: 0 and r of (3.4). These sampled

projections will permit an unambiguous reconstruction only to a finite

- ,resolution which is determined by both the sampling density and sampling

geometry. The sampling geometry assumed for this work employs uniform

angular and uniform radial sampling intervals. The sampling of p(r,O)

in the radial direction is indicated in Figure 3.1.

3.1.2 Reconstruction techniques

In order to derive reconstruction techniques for the case where the
'%*q %'

"-'. ".' projections are sampled, the mathematics of the continuous case will be

examined first. Given a complete set of projections, many

reconstruction techniques are available. Some of these methods are:

Algebraic Reconstruction Techniques (ART) [2], Rho-filtered layergram

:........... .... .............................................. ...........................
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(2.24], Convolutional-Backprojection (CBP) [2,24] and Direct Fourier

(DF) [2,26,27]. ART, CBP and DF methods will be discussed in some

detail while the Rho-filtered layergram method will only be identified

in passing. A key concept in tomography is the Projection Slice Theorem

(PST) which forms the basis for both the CBP and DF reconstruction

techniques.

The PST provides a relationship between projections of f(xy) and

center cross-sections of the two-dimensional Fourier transform (2D-FT)

of f(x,y). Denote the 2D-FT of f(x,y) by F(u,v). The PST theorem

states that the one-dimensional Fourier transform (ID-FT), over r, of a

given projection p (r) denoted by P y(R) is identical to a function which

* is the center cross-section (slice) of F(u,v) at the same angle (y),

i.e.,

P (R) = F(u,v) (3.7)

where F(u,v) is evaluated along the line u=Rcosy, v=Rsiny. To prove

this, consider the projection at a given angle y which can be written as

PW(x') = - f(x',y')dy' (3.8)

in the xI,y' coordinate system, where x',y' is equivalent to the

original xy coordinate system rotated by angle y. The same

relationship exists between u,v and u',v'. The 1D-FT of p (x') is
Y

P (u') = pyx')e-ju X dx'  (3.9)

and the 2D-FT of f(x',y') is
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F(u' ,v) f 3Jf(x',y')e-J(u'x'+v'y')dx'dy '. (3.10)

A slice of F(u',v') at angle y is defined as F(u',v') with v'=O.

S"Substituting (3.8) into (3.9) and equating with (3.10) results in

. P(u,)f f(x',y')e-Jx'u'dx'dy ' =  f(x',y)e - j(u#xf+v ' )dxrdy

(3.11)

when v'=0. Since y was arbitrary, the above is true for any angle of

.* rotation (projection). This proves the PST.

One possible reconstruction technique is based on a direct

implementation of the PST. Starting with projection data, a 1D Fourier

transform is applied to p(r,O) to generate P(Re). These transformed

projections, P(R.O), completely describe F(u,v). An inverse 2D Fourier

transform is next applied to F(uv) resulting in the image f(x,y). This

is the direct Fourier (DF) reconstruction method. A major difficulty

with this technique is that in any practical case the data are sampled

• as described earlier. Since projections are sampled in angle,

information concerning F(u,v) will only be available along a discrete

set of radial lines passing through the origin. The angular interval

* corresponds to the angular sampling of projections. Compounding this

* .. problem is the radial sampling of each projection. These data, can at

best, only be used to find approximate values of F(u,v) along the radial

* :ilines defined by the angular sampling rate. The reason is, with discrete

" data, a discrete Fourier transform (DFT) must be used which can only

provide approximate samples to the FT of the continuous signal from

which the original samples were taken. Consequently, these samples are

'4".

! "
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only approximate values of F(u,v) on a polar raster, i.e., erroneous

samples are available for discrete values of R and e. This is

illustrated in Figure 3.2. In order to efficiently generate the final

image, a fast discrete Fourier transform (an FFT) is implemented. To

employ an FFT, samples of F(u,v) must be available on a rectilinear

raster, implying a polar-to-rectangular interpolation is required. The

steps involved in the DF reconstruction method are: 1) Calculate the

1D-FFT of each projection. 2) Using this transformed data set that

describes F(u,v) on a discrete polar raster, a two-dimensional

interpolation is performed to obtain samples of F(u,v) on a discrete

. rectilinear raster. 3) Finally, a 2D inverse FFT is employed to

calculate samples of f(x,y) on a recti'linear grid. Variations on this

method include filtering the data in the radial or angular directions "

[27], or using Hankel transforms to calculate the inverse polar Fourier

transform from a discrete polar grid [28,29,41. This last technique

generates samples of f(xy) on a polar grid directly from the

transformed projections.

Convolutional-backprojection is the next reconstruction technique

to be discussed. Backprojection can be viewed as the reverse of the

projection operation. Instead of integrating over the image to generate

the projections, each projection is "smeared" across the region of

@1i support for the image. The idea of smearing is to evenly distribute over

the entire image, information contained in each projection. Since range

information has been integrated out by the projection process, smearing

,. is the most unbiased action to take. Let S denote the region of support

for the image in the x,y plane. Consider the image of Figure 3.3 and

..-... •o

-------. ... .. . . . . . . . . . . . . . . . .. . .- .. . . - -. . .- ','.--'"-°'"- " .
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Figure 3.3 Examples of projection data.
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three arbitrary projections of that image p0 (r), p0 (r) and p0 (r).
- 1 2 3

Smearing is the process in which the projection value for each r for a

-. given 0 is uniformly divided along the line of integration in S defined

by the point (r,O). Since each projection contains relative spatial

U. information only in the direction perpendicular to 0 (azimuth), in order

to be maximally fair, the data must be uniformly divided (smeared) along

the line of integration over S. This is illustrated in Figure 3.4.

-: . Regions in S where this smearing overlaps to the greatest extent are

objects in the image. Little information is present in any given

projection concerning the position, magnitude and quantity of specific

targets in the range direction. These data are degraded in a given

projection because the projection process has integrated this

information together. However, since projections are obtained over a

range of angles, in most cases n radians, range information not present

in one projection is available in others as cross-range (azimuth) data.

It is this property of having perspective that allows an unambiguous

reconstruction of the image from projectiois. This is also illustrated

in Figure 3.4. In a complete data set, each. projection and its

orthogonal complement is present.

"" With some thought it can be seen that "smearing" is the operation

- called backprojection as defined by

f(x~y) = p(xcosO + ysinO, 0)dO. (3.12)

In (3.12), instead of dividing each projection value among all the

'| points along the original line of integration, i.e., among each point in

x,y for which it may possibly contain some information, each point in

,°.

%'!

Io
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Figure 3.4 Backprojcction.
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•* x'y is given all of every projection value it may be associated with.

The operation decribed in (3.12) is an integration along circular

contours in the projection domain. The contour used is determined by

the specific values of x and y, thus selecting which projection values

are possibly associated with that image point. A result of

backprojecting is a substantial low-frequency offset in the

reconstruction. Consider the effects of significantly more projections

in the example of Figure 3.4. In order to compensate for this offset,

some sort of filtering procedure must be included. In Rho-filtered

layergram reconstruction, a 2D filter is applied after backprojection to

, correct for this offset. In the C7P method each projection is filtered

prior to backprojection, consequently the name, convolutional-

backprojection.

To derive this filter function, let p(r,O) be a complete set of

continuous projections of f(xy) and let P(RO) represent the FT of

*p(rO0) in r. Then

P(R,O) = p(r,O)eJ2 Rrdr O<O<n. (3.13)

Via the PST, the image in polar coordinates, f(r,*), can be expressed as

f(rO) = 2fP(RO)e- 2 nRrcos( - O)RdRdO. (3.14)

Considering the geometry of the projection scheme illustrated in Figure

S . 3.1, i.e., O<O<i implying that a_ 1(, (3.14) can be rewritten as

f(r,O) = IP(R,O)e-j2nRrcos(O - O)IRldRdO. (3.15)

The integral with respect to R in (3.15) can be considered a filtering
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operation where each Pe(R) is multiplied by IRI and then inverse

transformed. Letting p'(*,*) denote the filtered projections

p'(rcos(O - e),e) = P(R,e)IRIe -2n Rrcos( - edR. (3.16)

Substituting p'(*,*) into (3.15) results in

f(r,O) = Ip'(rcos(.-O),O)de, (3.17)

which is equivalent to

f(rO) = p'(rcos~cosO + rsin~sinO, e)de. (3.18)

Applying some trigonometry, (3.18) can be rewritten for f(x,y) as

f(xy) = Ip,(xcose + ysine, O)dO (3.19)
1pp

which is thembackprojection operator defined in (3.12). The filtering

operation defined in (3.16) can also be implemented in the spatial "

domain via convolution. In this case, the original projections p(r,O)

are first filtered by a function with an impulse response given by

k(r) = 11 Rle-j 2 Rrdr. (3.20)

After filtering the projections either in the frequency domain by

multiplying by IRI or in the spatial domain by convolving with k(r),

p'(r,O) is backprojected with (3.12) to generate the final image f(x~y). -'

As with the DF method, discretization of (3.19) required by the

sampled data poses a variety of problems. Consider first the filtering

of samples of p(r,e) to obtain a close approximation to p'(r,e) at the

sample points. With non-periodic data it is generally not possible to

.4%

oi

"-S.. -.. -. . - ..- . " . : ".. '"'-.. . - "'-- .:"- . . .. - -.-.- :.-> : . -. - -. .> i -



67

discretely filter data without introducing aliasing errors. The object

3 then is to design a filtering scheme that minimizes these aliasing

: 2~errors. This can be accomplished in various ways, some of which

include: increasing the number of filter coefficients used in

M convolution calculations, using longer FFT's or modifying the kernel

k(r) as to maximize or minimze certain reconstruction features. In

reference to the last statement, many authors have proposed assorted

approximations to k(r) for specific applications [24,30,261.

A second issue is the discretization of the backprojection integral

in (3.12). With discrete filtered projection data, (3.12) will have tomI

be implemented as a finite sum. A trapezoidal approximation has been

shown to be in some sense optimal for performing backprojection [24].

With a trapezoidal approximation, (3.12) becomes

M-1

f(x,y)=6 p'(xcos6n+ysin6n,6n) (3.21)

n=O

where 5 is the angular sampling increment and there are M projections

over n radians, i.e., 6 = n/(M-1). Inspection of (3.21) shows that

"-' interpolation will be required between available samples of p'(r.O) to

- obtain values of the projection at the point xcosbn + ysinbn (=r).

"" Since the integration in (3.19) is over 0, the summation in (3.21) is

over 6n, which implies that interpolation is only required in r.

Constrast this with the 2D interpolation required by the DF method.

A significantly different reconstruction approach to those

previously described above is the Algebraic Reconstruction Techniques

(ART). The major way in which these techniques differ from

convolutional-backprojection or direct Fourier methods is that ART
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assumes by design a discrete data set and a discrete reconstruction

grid. The object is to reconstruct sample values of the image to an

"- accuracy dictated only by sampling constraints (density and geometry).

S-.Compare this to CBP or DF where approximations are made to the

continuous model in order to employ sampled data. These approximations

involve error prone processes such as filtering and interpolation which

at best can only lead to corrupted sample values of the image. While

this type of corruption may be small in the CBP method, it is even

smaller or non-existent in ART even if the same initial data set is

: used. For a good general reference, again see [2]. It is sufficient

for the purposes of this chapter to only briefly introduce ART.

Two basic algebraic reconstruction techniques are direct

multiplicative ART and direct additive ART, both of which are iterative.

Denote the sampled projections by p(ek,Sm), k=O,..,K-1 and m=0,..,M-1,

where a is the radial sampling increment and 6 is the angular sampling

interval. The image to be reconstructed is represented by an N x N

array of pixels represented by d.. i,j=l,..,N. Using the superscript q
1j

to denote the iteration number, let pq(ak,6m) represent the projection

calculated from the q'th image estimate 6 .. These reconstructionI J

techniques update each pixel value by a factor related to the

discrepancy between the original projections p(ek,6m) and the previously

calculated projections pq(ek,6m). An initial value assumed for all

pixel values can be the average pixel density n calculated from the

projections by

M-1 K-I
, r1= '-1 P(ek,6m) = d0  ij=l, .. ,N. (3.22)

1 
ij

m=0 k=O
!o-°.-',.4
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- In direct multiplicative ART, the updating scheme is

= k6m) di. (3.23)

•j "oq 11.I
for 1J Lpqk,6m)J

for all k=O,..,K-1 and m=O,..,M-l, where only those pixels possibly

V" involved with the specific projection value defined by the values of k

- and m are modified. For direct additive ART, the modification scheme is

dq+1 fmax[ d + (p(ek, 6m)-pq(ck,bm))/T, 0 ] (3.24)iij ij

2 -:.for all k=0,..,K-1 and m=0,..,-I. In (3.24), T is the number of pixels

,..K- in the projection ray defined by k,m and again, only those pixels in the

" specified projection value updated. In both of these algorithms, the

* .process is iterated to produce the final result.

3.1.3 Relative image quality and computational requirements

Two factors by which a specific reconstruction algorithm can be

judged are image quality and processing requirements. Some qualitative

relationships will be stated here for reference in later sections.

Image quality is at best difficult to measure and, as such, it is

hard to compare this aspect of different methods. It would appear from

the literature that in most cases convolutional-backprojection generates

" "" the highest quality images, ART the second best and direct Fourier

third. There are, however, some situations in which algebraic

reconstruction techniques perform better than CBP [2]; we will not

" * comment any further on this. Some of the reasons for this ordering of

CBP, ART and DF follow. Interpolation is an error-producing operation

because it must approximate an unknown value with a finite number of

-"4.: - .'. , , . , , . -... .'.....2"? - 2.;. .:.2.-'-. . . - ",'.".;;.".-.., ;."-'- -.:'''.. : ;':-." :.
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calculations on possibly noisy data. Since ART is based on a discrete

model and employs only the available data, no interpolation is required.

Convolutional-backprojection requires only 1D interpolation in the

radial direction and can be performed quite accurately. Since the DF

method requires 2D interpolation, given the same amount of

Lomputational time as a 1D method, it can only result in an inferior

result. That 2D interpolation is poorly defined and a less studied

problem further complicates the issue. Secondly, the fact that the

density of polar format Fourier data decreases for increasing R

(frequency) implies that more widely separated polar points are used to

calculate one rectangular point at higher frequencies than at lower

frequencies. This larger separation (lower density) will cause a

larger uncertainty and consequently more error in the interpolated

value. It should be pointed out that interpolation error is in most

cases the single largest source of processing error in these

reconstruction techniques. From these comments, ART would appear to be

the superior method; however, the recursive and consequently asymptotic

nature of ART tends to limit the obtainable quality.

Another factor affecting image quality is the sensitivity of the

reconstruction method to noise in the data. To our knowledge, no

definitive statement has been made establishing one of these techniques

as the superior method; however, some comments are in order.

Algebraic reconstruction techniques are recursive in the sense that

the old image is processed in order to generate the new image. Since

recursive techniques are generally less sensitive to noise than non-

recursive methods [31], it is reasonable to expect ART or recursive
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techniques to perform relatively well with noisy data. In reference to

the direct Fourier and convolutional-backprojection methods employed

here, both can be characterized with linear operators. The direct

Fourier technique generates the image via an inverse 2D Fourier

* transform which is of course a linear operator. Prior to this, the

. projection data are transformed with a FT into the Fourier domain and a

2D interpolation is performed (both of these operations are linear). In

CBP, the ID filtering of each projection is linear and backprojection is

* -also a linear operation. If an additive noise model is assumed, then in

either the DF or CBP case the resultant image can be treated as a sum of

the reconstruction technique operating on noise-free data and the

reconstruction technique applied to the noise only. The DF method does

not contain a single step in which the noise can be reduced. In CBP the

fi Ufiltering operation can also be used to help reduce the noise in the

- data. Details will be discussed in Section 4. Thus in terms of

sensitivity to noisy data, CBP may be expected to perform slightly

I better than DF. Further, both the ID and 2D interpolators generate

error and in this sense can be treated as noise sources. Since the

error introduced by a 2D interpolator is generally larger (as discussed

earlier) than for a 1D interpolator, the CBP image should again be

somewhat superior to the DF image in terms of noise and image quality.

In some of the examples provided these features can be identified.

-. The second issue of processing requirements will be discussed with

reference to computational and memory demands. Computational needs will

be accessed by the most operationally demanding process in the algorithm

in terms of multiplications and additions. In DF methods, if a 2D
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interpolator requiring less than log2N operations per interpolated value

is employed, then the most demanding process is the calculation of 2D

inverse DFT's. This operation requires O(N21og2N) calculations. For

both CBP and ART, 0(N3 ) operations are required by the image generation

procedures. In CBP this image generation (reconstruction) is performed

only once while in ART this procedure is repeated many times.

Additionally, ART has the secondary expense of calculating projections

prior to each iteration. Including these additional factors, ART

requires more operations than CBP but still approximately O(N3). As

expected, the higher quality images are more expensive in terms of

computations, with ART and CBP imposing the largest computational burden

and DF the least.

Lastly, the storage requirements of the various techniques will be

reviewed. In order to meet the sampling requirements of the DF method,

approximately 8N2 memory locations are needed to store the complex DFT

of the image. For both CBP and ART the largest memory demand is the KM

locations needed to store the projection data. Because of sampling

requirements, KM is usually about twice the size of the N2 locations

required to store the image. This brings the total storage needs for

CBP or ART to approximately 3N2 locations which is still less than half

that needed for the DF technique.

NWo-
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3.2 The Missing Cone Problem and Some Solutions

In this section the missing cone problem is explained and some of

the solutions other researchers have proposed are discussed. The

missing cone problem belongs to the class of so-called inverse problems.

These problems are characterized by having incomplete observations of a

scene and partial constraints on the reconstructed solutions. For the

missing cone problem the incomplete observations are represented by the

set of projections known only over a limited angle P<n; the complete

observation set would include projections over n. Some of the partial

constraints that could be included are: non-negativeness of the

reconstruction and observations, spatial or frequency bounds, signal

magnitude limits and specific known structural features such as shape,

size or position of objects in the image. Examples of more subtle

sources of knowledge, often called a priori information, include a known

degree of smoothness in one domain as a consequence of a spatial or

frequency limit in the other domain, certain symmetries in Fourier space

or restrictions on phase. These are referred to as a priori information

because while they can sometimes be derived as being a consequence of

.7_ the constraints, rarely are they explicitly exploited or employed in

reconstruction/enhancement schemes.

a. As discussed in the introduction, the missing cone is a problem of
,ai

limited or restricted perspective. Consider Figure 3.5. Projections

available over P provide resolution in x but little information in y.

To improve the resolution in y, information (projection data) is needed

over the n - a (= a) region. Another interpretation provided by the

PST is that spectral information is missing over the a region in the

.

10-4-'
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Fourier domain. With this view, the goal of an enhancement scheme is to

* generate approximate information over the a region of the Fourier

domain. The missing cone situation can now be interpreted as a spectral

extrapolation problem. One extrapolation technique is the maximum

entropy method (MEM) of Burg [32,33]. In this technique, the idea is to

choose from the infinity of possible extrapolations the one that

maximizes some measure of entropy in the solution. By maximizing the

entropy, the most unbiased solution that is consistent with the known

data and constraints is chosen. This solution is purported to be the

most reliable, based on the principle that no information has been added

that is inconsistent with the given data. In the Fourier domain, one

' proposed measure of entropy is

Wi E = logF(ulv)dudv (3.25)

where F(u,v) is the 2D Fourier transform of the image [34]. The symbol

- A represents the region of effective support for F(u,v) in Fourier

n space. It should be noted that any measure of entropy is artificial in

the sense that a deterministic signal has zero entropy. Since the known

and unknown data are assumed, at least implicitly, to represent a unique

and deterministic object or scene, measures of entropy are clearly

* somewhat artificial. Placing these theoretical notions aside, the

- "source of rationalization for (3.25) is the definition of entropy rate

(ER) of a random process. The entropy rate for a stationary, band-

limited random process is

* 6 ER = logS(w)dw + 0(w) (3.26)

where S(w) is the power spectrum of the process Q is the cutoff
,*

*2 6
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frequency and 0(w) represents higher-order terms. While Fourier MEM

techniques have been applied in other imaging situations [34] with

apparent success, to our knowledge they have not been used in the

tomographic situation.

Maximum entropy techniques can also be applied in the spatial

domain if an appropriate measure of entropy can be defined. In [35],

Baba et al. discuss the details and present some results of a spatial

domain MEM where the measure of entropy is defined as

E = l s1og d1 j, (3.27)

i J
and where dij are the pixel elements of the image. These results were

clearly superior to those of an ART technique that these authors

previously considezed [36]. Gordon et al. [37] discuss a similar ART

ttchnique applied to the missing cone problem in which the entropy is

claimed to be maximized as a result of the techniqae although it is not

a specific objective. The published results in these two papers [36,37]

are nearly identical.

In the application of ART to the missing cone problem, only a minor

modification is needed. Referring to the discussion in Section 1,

instead of updating the pixels based on a function of all the original

and all the calculated projections, only the original projections over 0

and calculated projections over 0 are used to modify the pixels as in

13.23) or (3.24). Because the updating procedure does not employ or

calculate projections over the a region, no constraints can be imposed

on these projections. This means that no restrictions can be imposed on

the image as a result of constraints applied to the projections. The

0. , .- : . . : : .' : . -
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point here is that ART leaves an entire segment of the data set

F unconstrained and accordingly ignores a valuable source of information

that could be used to enhance the image.

- The reason that HEM is superior to ART is now obvious. Since MEM

generates data in the a region and applies solution restricting

constraints both on these data and as a result of this application on

the image, some additional implicit information is gleaned from the

known data. This additional information is then used to generate an

enhanced image. In ART the only constraint used is the raw data

provided. No a priori knowledge or additional constraints are included

in order to enhance the solution. Finally, since MEM actually attempts

to extrapolate the spectrum prior to reconstruction and ART simply

reconstructs the image, MEM should produce the superior result.

From the results of MEM and ART as applied to the missing cone

problem, much improvement in image quality can be obtained by the

imposition of constraints and the inclusion of a priori information.

Unfortunately, the improvement MEM realizes over ART is obtained at a

significant computational cost. While ART requires 0(N3 ) operations per

iteration, MEM consumes 0(N6 ) operations per iteration for the same N x

N image. It is desired to find a technique that is computationally

- -. comparable to ART but which can also incorporaie constraints and a

"0.- "priori information in some manner to achieve results superior to MEM.

Some other solutions to the missing cone problem include a Bayesian

approach [38], which maximizes an a posteriori conditional probability

density. This conditional probability density is related to assumed

statistical measures of either the data or of the required image. In

7
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another approach, a set of eigenfunctions are defined for typical

tomographic images. It is proposed that any image (in the class) then

can be reconstructed with linear combinations of these eigenfunctions.

The problem then reduces to one of determining an appropriate set of

eigenfunctions for the class of images under consideration, and then

estimating the coefficients from the available data [39].

The last technique to be discussed was proposed by Lent and Tuy in

[40]. In this method, the various sources of constraints are used to

define an intersection of convex sets that the solution must lie in.

The algorithm iteratively applies these various constraints by the use

of orthogonal projections on the convex sets in which constraints are

available. Since with each application of constraints, the error must

be reduced, or the distance to the intersection reduced, the algorithm

will converge (assuming that the intersection is non-empty).

3.3 Algorithms for the Solution of the Missing Cone Problem

The previous section characterized the missing cone problem as a

spectral extrapolation problem with constraints on the solutions and

partial information in both the spatial and Fourier domains. In this

section, the techniques of one-dimensional spectral/spatial extrapolation

are generalized into two-dimensions. This two-dimensional technique is

then modified for the missing cone problem by the incorporation of

problem specific relationships into the algorithms.
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An unstudied application of Gerchberg's algorithm is for the case

F2 in which multiple unconnected intervals of the signal are known. In

this situation the recursive filtering and substitution scheme of Figure

." .2.2, although still theoretically applicable, is no longer easy to

implement. Instead, the transform-and-substitute (or constrain)

technique originally described is used. It is conjectured that this

multiple interval case possesses convergence properties similar to the

single interval situation. In the theoretical case with no noise or

other signal degradations, any one interval uniquely describes the

complete signal. As a result of either the analyticity or Taylor series

argument, one interval is sufficient and the rest are redundant.

Practically, with noise and other data collection degredations present,

the multiple intervals can be considered as further constraints on the

solution. The net effect of multiple intervals is to further constrain

the system with a better solution as a result. For the periodic case,

the multiple intervals would simply reduce the size of the

extrapolation/interpolation region and the iterates still approach the

unique solution. For the non-periodic case, since the cause of the

divergence phenomena is the inability to perform ideal filtering and

this problem is still present, the convergence behavior will be the same

as in the single interval case. It will be seen, in later examples,

that the convergence phenomena present in the 1D case carries over to

the 2D situation.

%*.°r ."
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3.3.1 Some algorithms

Generalizing the multiple interval ID algorithm for the 2D missing

cone problem is straightforward. Consider the case where regions of the

2D Fourier transform of an image are missing and some constraints are

present in the spatial domain. The 2D Gerchberg algorithm (2DGA)

parallels the 1D algorithm exactly. First, an approximation is made to

the unknown parts of the 2D Fourier transform. Next, a first estimate

for the image is generated via a 2D inverse Fourier transform and the

constraints are imposed on the spatial image, thereby reducing the

error. This estimate of the image is then Fourier transformed to obtain

the 2D Fourier transform. The error is again reduced by the

substitution of the known spectral data and the algorithm is repeated.

See Figure 3.6. Typical methods for determining convergence are: to

monitor small changes in either the image or Fourier domains or to test

for correlation between the known observations and the calculated values

that correspond to those observations. In [41] Renjen and Huang discuss

the details of this algorithm and present some preliminary results. As

other authors (41,42] have observed with similar techniques, it was

noted that the error in the 2DGA decreased for a few iterations and then

increased. For the 2DGA it is reasonable that the cause of increasing

error is the same as that for the ID case.

The 2DGA is by no means restricted to the missing cone problem. It

is sufficiently general to accommodate nearly any combination of regions

and constraints. Variations of the iterative technique of transforming

between domains where information or constraints are available have been

applied to a wide class of problems. As an example, consider the case

' - -. . . .-.- .
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where the magnitude of the Fourier transform and some image information

-* is known but phase information is missing [43].

To best exploit the power of these iterative techniques, problem

dependent relationships should be identified and incorporated into the

algorithm. For the missing cone problem a unique relationship that can

be exploited is the link between projections, the image and slices of

the 2D Fourier transform of the image. The first algorithm to be

discussed involves calculating the projections of successive image
1%

estimates and then using these data to reconstruct the image. This

algorithm is also illustrated in Figure 3.6. Starting with the original

incomplete data set (the known cone), an approximation is made to the

unknown data. From this estimated but complete set of projections, an

image is reconstructed using either a convolutional-backprojection or

direct Fourier method. This image is the first approximation to the

result. Next, constraints are applied to the image, reducing the total

error. From this modified image a complete set of projections is

calculated and additional constraints are imposed on the projections.

The original projections, those over P, are substituted into this data

set reducing the error a second time. This now complete data set is

next used in reconstructing a better image estimate and the process is

repeated until some convergence criterion is met. This algorithm will

be referred to as the Projection Slice Algorithm (PSA) (44].

The only difference between the PSA when implemented with direct

Fourier reconstruction and the 2D Gerchberg algorithm is that the 2D

Fourier transform of the 2DGA is replaced by the calculation of

projections and the application of the Projection-Slice Theorem, i.e., a
4o.

t. . . . . . - .I. . - V * - * - - . . . - --- - .- --. - . - .- --- .-.o- - , --- .- -



83

direct Fourier reconstruction. Note that in both cases a 2D inverse

- Fourier transform is used to obtain the image from the Fourier domain

data. In the case of using convolutional-backprojection to generate the

image, a totally spatial domain version of the PSA is realized which is

structurally identical to the direct Fourier method and consequently

quite similar to the 2D Gechberg algorithm. While the DF and CBP

realizations of the Projection Slice Algorithm may be very similar

structurally, they are substantially different in the results they

produce. Reasons and examples are provided in the next section.

poll A second type of algorithm is based on the periodicity ofU

projections, see equation (3.6). Functions s(rO), periodic in 0 can be

constructed for each r, Or<K/2, from the projection data. The

r available data provide the known intervals in each of these periodic

functions. These functions are constructed in the following manner.

Let K denote the number of samples in each projection. Consider the

signal p(r,O) as a function of 0, O<0<n for O<r<K/2. By concatenating

the signal p(-re) for 0<0<n to p(r,O) forming s(r,O), a signal periodic

in 2n is generated as illustrated in Figure 3.7. Assuming a reliable

band-limit is known for this periodic function, the signal can be

extrapolated/interpolated to arbitrary accuracy as previously mentioned.

Practical considerations affecting the accuracy of this extrapolation

are: accuracy of the band-limit, width of the known intervals, the

.4 -number of iterations performed and the specific implementation of the

algorithm. By performing this extrapolation for each r, O<r<K/2, the
unknown intervals of each periodic function can be recovered. Taken as

a set, these extrapolated functions uniquely determine the missing cone.

... ,.'
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The now complete data set is used to generate the image with either

o.
direct Fourier or CBP reconstruction. This algorithm is called the

Angular Iteration Method (AIM) (44].

Studies of the mechanics of tomography indicate that the angular

bandwidth for these periodic signals is a function of the spatial extent

of the image. Needed is an accurate method of calculating this band-

limit. While it has been shown that these periodic functions are not

strictly band-limited in 0 even for a function f(x,y) that has a bounded

region of support in the (u,v) Fourier plane, these functions can be

considered to be effectively band-limited in [451. This effective

band-limit contains 98% of the spectral energy. Rattey and Lindgren

[451] also supply the required relationship between spatial extent rT and

-(lp. Denoting by wB the radius of support for f(x,y) in the (u,v)

Fourier plane, then

'' =l+rT. (3.28)

Using the above equation, a reasonable approximation can be found for W

as a function of the radial extent of the image.

The rate of convergence for Papoulis' algorithm can be

significantly improved if a good initial estimate is used. In AIM this
.j

translates to having an initial approximation to the missing cone. A

good source of these data is the PSA. An alternative algorithm is a

two-step method where one or more iterations of the PSA are performed in

order to obtain a good estimation for the missing cone data. Known data

augmented by this approximation to the unknown projections, which are

available after one pass through PSA, are used as the starting point for

. . AIM. This initial estimate to the unknown intervals of the periodic

I ",. "' .f' '-. -'- -'.', <'.'....----i. ". ',.. ' .- •"."-. : "- .-. '
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functions will improve the extrapolation obtained after a finite number

of iterations on any of the K/2 signals. The image can now be

reconstructed from the complete data set or further iterations of PSA

and AIM could be performed.

While other variations on these algorithms and concepts are

possible, those described above exemplify the key idea of iterating

between various domains in which constraints and information are

available. As in Papoulis' and Gerchberg's algorithms, the imposition

of constraints forces convergence. Another interpretation concerning

this type of algorithm is that the observed data set describes a class

of solutions. The effect of applying constraints is to narrow this

class of solutions. If more constraints can be imposed, the class of

solutions will be smaller and consequently, the resultant image will be

of higher quality (less uncertainty). The purpose of iterating between

various domains is to supply a means of applying various constraints and

imposing additional sources of information in order to force consistency

between the iterative solutions and the available information.

Convergence is obtained when observations and constraints agree to some

specified tolerance. If, however, the applied constraints contradict or

force an inconsistency in the interations, then the algorithm may

diverge or become stuck in a oscillitory loop. Therefore, it is

important to insure that the applied constraints do not contradict each

other.

.-
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3.4 Computational Details and Experimental Results

" In this section some experimental results from the projection-slice

* algorithm and the angular iteration method are presented and discussed.

Additionally, many of the computational details concerning

*.. implementation of these techniques are reviewed. These topics include

• . interpolation, filtering, integration and methods for calculating

projections. Since interpolation is necesssary in both of the

reconstruction techniques, this problem will be reviewed first.

3.4.1 Computational details

One-dimensional interpolation is an extensively studied field with

many significant results. It will be sufficient for the purposes of

this work to simply state and employ some of these facts. An important

concept is the idea that 1-D interpolation can be considered a linear

filtering problem [46]. This view is provided via a frequency domain

analysis of the interpolation process. The key result is that l-D

interpolation in a band-limited signal can be performed with arbitrary

- accuracy by a linear finite impulse response (FIR) filter [46]. As an

example, consider 1-D linear interpolation between two points x(n) and

x(n+l) separated by a distance A. The desired interpolated value y(n)

is at a distance r measured from x(n). A FIR filter has the form

M

y(n) = x(k+n)b(k) (3.29)

* ' k=-M

where M is finite. For the linear interpolator,

%.4
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y(n) xn) + x (i ±i (3.30)y 2 (1-r/A 2(r/A)

which is the same form as (3.29) with M=l, b(-l)=O and b(O) and b(l) as

given above. In order to obtain a more accurate interpolation, more

terms are required implying a larger M and more non-zero coefficients.

If the position of the interpolated point changes as a function of n,

then the values of b(*) must also change if linear interpolation is

desired. In the implementation of convolutional-backprojection,the

linear interpolator of (3.30) is used with variable coefficients.

Two-dimensional interpolation is significantly less well-defined

and accordingly much more difficult to perform. In this work a bi-

linear interpolator is employed. This interpolator is of the same form

as (3.28) as it is essentially a FIR filter where the four known values

surrounding the desired point are involved in the calculations.

Denoting these known values as x(1) through x(4), the equation for

interpolating y is

y = b(1)x(l)+b(2)x(2)+b(3)x(3)+b(4)x(4). (3.31)

The coefficients b(1) through b(4) are functions of the position of y.

Ordering the x(n) clockwise around the point y, let A.. denote the13

distance between two corner points x(i) and x(j). Let ri represent the

length of the line from x(l) to y projected onto the line defined by

x(i) and x(j). The value of Aa is the distance between the point r1

along the line x(l) to x(2) and the point r3 which is along the line

joining x(3) to x(4). Variable ra represents the distance from r1 to y.

The valueb for Ab and rb are similarly calculated from the points r2 and

r4 .  Denoting the ratio of ri/Aij by 6i, one possible set of

* coefficients for (3.31) is:

."1
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b(1) = 0.5[(1-6a)(l-81) + (I-b)(I-4)]

b(2) = 0.5[b 1(-6a) + 5b(I-62) ]  (3.32)

b(3) 0.5[838 + 6b52]

b(4) = 0.5[8 (1-83) + 84(1-6)]

With this set of coefficients, when y is on any line joining corner

points, the above b's reduce to a 1-D linear interpolator as in (3.30).

For the convolutional-backprojection method a filtering operation

is necessary along each projection. In the simulations presented in

this chapter, the filtering operation (equation 3.16) is performed in

the Fourier domain by use of FFT's. Reasons for this choice include

computational efficiency and a more flexible means for altering the

approximation made to IRI. The approximation used is IRI multiplied by

an appropriate window [47]. Some sort of approximation is necessary

because IRI is not a realizable filter. To achieve a realizable filter,

a function is used to ,indow IRI such that it is of finite extent and

closely approximates IRI at frequencies where useable spectral

information is present. A second purpose of the window is to ameliorate

* the effects of Gibb's phenomena by introducing a smooth transition from

- : *IRI to zero. Lastly, by properly choosing the window and the width of

* "the window, some of the noise present in the data can be filtered out.

The window chosen is a Hamming window [47]. The filter function, F(n),

implemented in this work is given by

* . 4 ,

s d"

S ._ ,2; . . " " " " ' "' "
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F(n) { 2f(n-l)/Q n=l...L-1 (3.33)
[T(n-l)/Q [1 + C n-L ] n L •.Q/2

Q 2-1.

where L represents the damping factor (or window length) and Q is the

length of the FFT used. Figure 3.8 illustrates the effects of L on the

filter function F(n). The damping factor denotes the value of n at

which the window starts to modify JIi. Through experimentation a value

of L that passes 78% of JRI unmodified was chosen. For an FFT length of

256 this corresponds to L equal 100.

In the direct Fourier implementation of the projection-slice

algorithm, a 2-D low-pass filter is employed to aid convergence as in

the 2-D Gerchberg technique and to reduce the effects of noisy data.

This filter is realized by low-pass filtering each projection prior to

the 2-D interpolation step. Since the data will be in the Fourier

domain for the interpolation step, implementation of this filtering

(windowing) operation is easily performed by truncation (or by! -
multiplying point by point with the appropriate window). The cutoff for

this filter is primarily determined by the desired resolution in the

final image although other factors may influence the choice. To employ

a filter with a cutoff that passes frequencies representing detail finer

than needed would be ignoring a possible source of constraint on the

solution. This idea also can be a motivating factor in the choice of

the damping factor, L; see (3.33).
-"".

A third filtering operation that can be performed is angular

filtering of the projection data to apply further constraints and reduce

the effects of noise. Since the projection data can be formatted as

signals periodic in angle, (see equation 3.6) it is possible to ideally

.1
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filter these data. What is implemented is a low-pass filter passing

only spectral information that is consistent with a desired resolution.

Windows may be used to modify the effects of this filtering to obtain

specific results. As in the radial filtering, the choice of a band-

limit higher than the needed resolution would squander resources. It

must be noted that this angular filtering operation is independent of

the filtering employed in the angular iteration method. In AIM, the

purpose of angular filtering is to extrapolate the signal. The angular

filtering is employed as the primary method of enhancing the

reconstruction. While these two ideas are closely related, in AIM this

angular filtering is the primary source of extrapolation. In the

projection-slice algorithm it is not necessary; it is simply used as

another source of constraint.

An important step in both the PSA and AIM is the calculation of

projections. As mentioned earlier, the various non-symmetrical and

non-linear effects present in real projection data are not considered in

this work. The reason is simple. Many of the aforementioned effects

are peculiar to the specific problem at hand. Since the motivation of

this work is to provide some general concepts and ideas, detailed

consideration of these various problems could severely limit the

applicability of this work and certainly obscure some of the issues.

For similar reasons, only parallel beam projection data are employed.

This is not particularly restrictive because other data sets, such as

fan beam, can be employed by either modifying the backprojection

operator [2] or by calculating parallel beam projection data from the

fan beam data -- a process called rebinning [2).
.4
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Two different projection models have been used in the algorithms.

.I Thus far not enough difference has been noted in the results to justify

considering one method as superior. The first and simplest technique

called the nearest point method, models a projection scheme in which

very narrow beams of radiation are used to collect data. Let the image
oq4

be represented by a set of pixels dig for ij=l ...N (see discussion

concerning ART). Referring to Figure 3.9, consider the projection at
.-.

* angle y (m6). For each value of r (=ek), a summation is performed

along the line defined by y and r. In order to insure that a relatively

consistent number of points are included in each projection value, the

summation over the image is indexed by the variable corresponding to the

direction of longer intersection between the image and line. In Figure

-" 3.9 indexing is over i for the projection at angle y. If the projection

were at angle y+900, then indexing would occur over j. For each i or j,

S €the value of the point nearest to the line is included in the sum.

-* In the second technique, all the points that lie within a specified

4 •. distance of the projection line are included in the sum. This technique

* . is more flexible because both narrow beam, as above, as well as wide-

beam data collection scheme can easily modelled. If the defined

*beamwidth is sufficiently wide, this scheme will not have to account for

* the relative projection angle, as in the first case, since the width of

- the beam will naturally include a fairly consistent number of points.

A third technique, not used in this work, models each pixel as a

square (or other regular shape). In the calculation of a projection

value, a beam model is used in which the area of each pixel square

intersected by the beam is calculated and a corresponding portion of

"' ,I.



Ir rr, 1 .,.. , ! ! W rI .m r wrr rwr , .~ ''. . . ~ -' --

94

.

-4-~

+ +4

+ .- + + ,

, ! .I-+ + + + + + +
-+ + + + + + +

, | + + +4 + .+ + + +

4 
- .

E) e -. . . .

+ + + + + + + +1 +t

~~+ +--- + + + + + +"O a

/0

+ + + + + + +. +

+ + +

a%

.-.- --...I-.; .--.- ,+ + +- .-. -.+ + ..-. . ._ -,._ . .,+ +. .



that pixel's value is summed. This technique is computationally

expensive in comparison to the previous methods and for this reason was

not used in the simulations.

One problem common to nearly all tomographic imaging systems is

g projection noise. In the process of collecting data, noise will

invariably either already be present in the data or will enter the

system via the data collection scheme. The latter is often called

sensor noise and can be modelled; the first is more difficult. Noisy

data are to some extent naturally generated by the artificial projection

' schemes just discussed. Clearly, neither method will generate perfect

S.-projection data, and hence this deviation from ideal can be considered

as signal noise. Sensor induced noise is easily simulated by either

. multiplying or adding a different random noise vector with each

projection. In this work, an additive Gaussian noise process is

assumed.

The goal of this work is to obtain an improvement in image quality

over that which is provided by directly reconstructing the image from

-. .the available data. In order to quantify this gain, some type of

objective measure must be applied. With the original image available,

,. as it will be in all the examples considered, measures that relate the

reconstructed to the original can be calculated. Those measures are the

average error (AE) and the variance of the error (VE).

N N 2?q.AEq Id= (3.34)

.p7

'p

i . - " " ' b % "" ' ' ' " " " " " " " " " " " ". ' . "-" ' " "' " " - " " " ." " ' - ' " ' . "
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N N

VEq i= J= (33
N N

~2
i=1 "-l

In the above d'ij represent pixels of the original image, diq is the

reconstruction after q iterations and q is the average pixel value found

from (3.22). These are the same measures used by Baba et al. [35].

3.4.2 Experimental results

In this section, some experimental results are presented to

demonstrate the properties of these reconstruction/enhancement

algorithms. All of the programs are written in FORTRAN VII and run on a

VAX 780 under a UNIX operating system. Two significantly different -

pictures are used in these examples. The first one, Image #1, is the
4.~

number 32; the second, Image #2, is a picture of chromosomes, Figures

3.10 and 3.11 respectively. Both pictures are 64 x 64 pixels in size

with 64 gray levels. In all of the following examples, the nearest

point projection method is employed in which 64 equally spaced

projections taken over x radians represent a complete data set. From

each projection, 128 equally spaced samples are obtained. A beamwidth

method was also employed, but since no significant differences were

noted the nearest point method is used in all of these examples. The

missing cone situation is constructed by simply calculating projections

over some restricted angle and supplying only this incomplete data set

to the algorithms. The term 50% of the data implies that 32 equally

spaced projections are taken over n/2 radians, with each sampled 128 .

.5,
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times. In all cases, projections are calculated over the same relative ,4
angle with respect to the picture. A line drawn from the center of the

picture to the right-hand edge is the reference line. Projections are

always calculated starting from this line, i.e., zero radians is the

initial projection angle. Consequently, a 50% data set calculates the

first projection at zero radians and the last one at n/2 radians --

- middle of picture to top edge. In all cases, zero is the initial

approximation to the unknown Fourier or projection domain data.

As discussed earlier, the projection-slice algorithm can be

implemented with either direct Fourier (DF) or convolutional- 4

''- backprojection (CBP) reconstruction. Examples of the DF reconstruction

will be presented first. Figures 3.12a) and 3.12b) show DF

reconstructions for Image #1 with 100% and 50% of the data. Figure

P" 3.12c) shows the result after 3 iterations of the PSA algorithm. A

- visual inspection indicates that PSA has improved image quality to the

extent that the 32 can be recognized in Figure 3.12c), whereas it could

*14 .not be identified in Figure 3.12b). The mean and the variance of the

error are shown in Table 3.1 to illustrate the quantitative improvement.

In this case, as in all the following cases, the statistics are obtained

by comparing the original and reconstructed pixel values over the entire

64 x 64 image array. The same example is shown in Figure 3.13 with the

addition of enough Gaussian noise to degrade the average signal to

average noise ratio to approximately 20 dB. A similar sequence of

examples is shown in Figures 3.14 and 3.15 for Image #2, which is a

microscopic image of a collection of chromosomes. In the final images "|

,- of Figures 3.14c) and 3.15c), it may be difficult to identify these as
#4"/ .

'. ..



On A

*.~99

~~MOW
-m 

Is
'p~~2 * ca ;r-

-, ~,* .

Z* *ca

ZZ 40w .-v20) ca' .

0 00

J .1 _ . - - wi , o

.4A

41

w~ 04 0 "

.- 4 0 '4

'U - ~ ~ A V4

00 fa~

74 -i
r-4 * X 41~

*0~~ **
06ik cd*n c

00 t -

W40

~Z.V4

A0 w



- *W W7 .K. r .

, -%'
.:<

100

P.F J

Table 3.1 Projectiow-Slice Algorithm: Direct Fourier reconstruction.

no noise noise

_ _ _ mean variance mean variance

picture 1

100% 0.388 0.538 0.382 0.557

50% 0.465 1.265 0.483 1.323

best 0.435 0.958 0.446 1.009

picture 2

100% 0.,364 0.285 0.380 0.358

50% 0.676 1.863 0.692 1.768

best 0.645 1.728 0.555 1.558.5 i
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pictures of chromosomes. However, if it is known a priori that the

image represents a collection of chromosomes, then the PSA enhancement

is sufficient to identify individual chromosomes and to determine their

quantity and orientation, something not possible with the initial

reconstructions shown in Figures 3.14b) and 3.15b). The effect of

additive Gaussian noise is also illustrated by these examples. Since

the initial reconstructions result in unrecognizable images, the added

noise does not really affect our interpretation. However, in the PSA

enhanced results for both images, the noise does not seem to seriously

affect our ability to visually interpret the results. The statistics

for Image #2 are also included in Table 3.1. Note that in both the

noise-free and noisy cases, the algorithm achieves a reduction in the

mean and variance of the error. Further, the improvement in the

statistics is quite small and does not reflect the noticeable

improvement observed by visual inspection.

Figures 3.16-3.19 show a similar sequence of examples using the PSA

implemented with convolutional-backprojection (CBP) reconstruction. The

corresponding statistics are summarized in Table 3.2. In comparing the

CBP examples with the previous DF examples, two noticeable differences

are evident. First, the initial reconstructions with 50% data both with

and without noise are considerably better than the corresponding

examples with DF reconstruction. In Figures 3.16b), 3.17b), 3.18b) and

3.19b), image identification is possible without further enhancement.

Second, the PSA-enhancement improves the statistics more than it appears

to improve subjective image quality. Perhaps the improvement in visual -

quality is not as significant as the statistical measures of Table 3.2

°•.-.
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Table 3.2 Projection-Slice Algorithm: Convolutional-Backprojection.

no noise noise

pitre1 mean variance m'ean variance

100% 0.144 0.110 0.152 0.121

:* 50% 0.530 0.935 0.523 0.930

best 0.327 0.617 0.346 0.732

picture 2

100% 0.297 0.114 0.314 0.127

50% 0.599 0.982 0.595 0.981

.-: K.best 0.516 0.418 0.509 0.505

4%
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may imply. It should be noted that it is not possible to directly

compare the numbers of Table 3.1 with those of Table 3.2, because in CBP

.' reconstruction the DC value of the data is removed by the filtering,

causing the reconstructed image to be normalized differently than in the

DF reconstruction. Also, the actual values of the statistics are not

very meaningful, but the trend from one case to the other is quite

significant. A study of Table 3.2 indicates that the added noise may be

masking some of the image degradation that is a result of the limited

data. In fact, this trick is sometimes used in image processing as a

. - means of reducing the effects of data irregularities or processing

inaccuracies. As in the DF reconstruction, the addition of noise does

not seem to harm the effectiveness of the PSA in improving image

quality.

The remarkable superiority of the initial convolutional-

backprojection reconstruction over the initial direct Fourier

reconstruction deserves some explanation. Part of the degredation in

the DF reconstruction is undoubtedly a result of the polar-to-

a .. rectangular interpolation, which was carried out in these examples with

a first-order 2D inverse distance algorithm. However, this is not the

primary reason for the differences. Assume for the moment,

implementations of both DF and CBP in which no processing errors occur,

i.e., th~fre are no interpolation, filtering or finite record errors.

Then the process of calculating the inverse 2D-FT of the Fourier domain

containing known data and zero padding as the initial guess, is

equivalent to calculating the inverse 2D-FT of the entire correct *1

Fourier transform,and then convolving this image with a distorting

4%.-. ."

4-,

.. . . . . . . .
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filter function. This filter function is the impulse response of the

Fourier domain function that assumes a value of unity in the known

conical regions and zero outside. Clearly, the impulse response will be
* -non-symmetrical and of significant relative spatial extent. The effect

lp of convolving the correct image with this function is to seriously

distort the image. This degradation is what is observed in the initial

DF reconstructions. Consequently, the effect of making an initial guess

of zero degrades the image in two ways: 1) it is clearly incorrect which

must degrade the image, and 2) the discontinuities introduced into the

Fourier domain enter the spatial domain by means of distorting

convolving functions.

As the angular region of the missing cone approaches zero, the

"" ,impulse response tends to an impulse function, which, when convolved

with the image will cause no degradation. In the limiting case, the two

%.. reconstructions would be identical. The reason that CBP reconstruction

is better is that only the lack of data harms the result. The presence

of zero data over a region of backprojection (integration) and the
'S

necessary discontinuous edges do not affect the reconstruction.

Figures 3.20-3.23 show reconstructions using a combination of the

.- *.. PSA and AIN algorithms. The version of PSA employed is the

" convolutional-backprojectiou implementation. The combination PSA-AIM

algorithm is a two-step technique in which one or note iterations of PSA

*. provide an initial guess for the nested iterations that AIM performs on

the periodic functions constructed from the projections. In the

examples shown, one pass of PSA supplies the initial data for 10

Siterations on each of the 32 periodic functions. These two steps are
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repeated four times (thus the 4 x 10 notation in the captions). Figures

3.20 and 3.21 are the noise-free and noisy reconstructions for Image #1,

while Figures 3.22 and 3.23 are the corresponding reconstructions for

* . Image #2. The statistics for the PSA-AIM algorithm are supplied in

Table 3.3. Although the statistical measures for AIM are slightly

inferior to those for PSA in the noise-free case, it appears that AIM

does resolve detail that is not present in the PSA results. It is not

unexpected that AIM performs statistically better with noisy data,

considering the intense filtering of the projections during the angular

iteration process.

As a final example, PSA-AIM reconstructions with 359 and 65% data

and a 20 dB SNR are presented. Figures 3.24a) and 3.26a) contain the

initial reconstructions from 359b of the data and Figures 3.25a) and

3.27a) contain the 65% data case. The 'best' reconstructions are in

Figures 3.24b), 3.25b), 3.26b) and 3.27b) for the 35% and 65% cases

respectively. Table 3.3 includes the statistics for these examples. As

in the 50% data case employing AIM, the statistical measures suggest

greater improvement than observations would indicate. This is

particularly true of Figures 3.25 and 3.27. The result in Figure 3.26

demonstrates how considerable detail can be recovered from a fairly

narrow cone of data when the appropriate constraints are imposed.

In Section 3 some comments were made concerning the expected

convergence behavior of these techniques. It was pointed out that these

techniques generally appear to reduce the error for a few iterations and

then diverge. An explanation for this is provided by generalizing the

1D analysis for the 2D case. That both the Projection-Slice algorithm

" ,' '. ..* W:-..R-'.;o.-..- ... ?'.; ..... ?.......,...... ... ";."...'**.'****..'* ... ;;,i. :
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Table 3.3 Angular Iteration Method.

,S

no noise noise

• . mean variance mean variance

. *. picture 1

100% 0.144 0.110 0.152 0.121

65% initial 
0.409 0.729

best 0.252 0.380

50% initial 0.530 0.935 0.523 0.930
b 5 est 0.336 0.679 0.336 0.669

35%initial 0.649 1.111
best 0.399 0.968

picture 2

100% 0.297 0.114 0.314 0.127

65% initial 0.481 0.442
best 0.446 0.247

initial 0.599 0.982 0.595 0.981
50% best 0.513 0.422 0.527 0.416

35 initial 0.693 1.705
best 0.615 0.906

dEo
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(DF or CBP implementation) and AIM demostrated similar tendencies in all

the examples was not, therefore, unexpected. The cause of this

phenomenon is the inability to implement ideal filtering (in either the
- .

spatial or Fourier domains). The introduction of more error with each

iteration and the compounding effects of recursively processing this

error eventually overcomes the converging nature of these algorithms and

causes divergence. Iterative techniques may be less sensitive to noisy

data than non-iterative methods. However, any noise (or error)

remaining after one iteration will still be present at the start of the

next iteration and add to the error generated by this pass, thus

increasing the total error in the data. Consequently, convergence and

solution quality are related to initial quantities of error and the

relative rates at which these may be reduced and generated.

Some final comments can be made concerning processing times. The

Projection-Slice algorithm requires approximately 90 seconds per

iteration when implemented with direct Fourier reconstruction, and about -

240 seconds per iteration when convolutional-backprojection

reconstruction is used. For AIM, approximately 360 seconds are

required for each iteration. This time includes the 10 iterations on

each of the 32 s(r,o) functions. The actual quoted times are not very

significant because they can vary greatly depending upon the computer

used and operating enviornment of that computer system. These times

are for a VAX 780 under a UNIX operating system. The important point of

relative time measurements is that they supply a good indication of the

comparative cost of these algorithms.

.
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3.5 Conclusion

In this chapter, the missing cone problem in computer-aided

.. tomography has been discussed. a number of state-of-the-art techniques

for dealing with this problem were reviewed, 
and two new experimental

* algorithms, the projection-slice algorithm (PSA) and the angular

.* iteration method (AIM, were presented and illustrated with examples.

The goal of these algorithms is to produce a higher quality image than

can be obtained by directly reconstructing from the limited data. The

algorithms achieve this improvement by combining two related concepts:

1) spectral and/or spatial domain extrapolation techniques and 2) the

inclusion of a priori information. The PSA and AIM algorithms

specialize the Gerchberg-Papoulis iterative extrapolation techniques by

incorporating characteristics of the projection data into the

algorithms. That this enhancement requires computations on the order

*needed for the original reconstructions is significant, particularly

when compared to the computational requirements of 2D maximum entropy

methods.

-*- Throughout this chapter efforts are made to present sufficient

"' detail to allow the reader to implement these techniques in practical

problems. One issue that has not been discussed is a convergence

criterion for indicating when the iterative process should stop. It has

been observed that, in virtually all the experiments carried out with

finite record length processing. the iterative procedure tends to

improve the image quality to a point, after which the algorithm begins

to diverge from the best solution. This phenomenon is a function of the

block lengths used in the FFT computations. and to some extent on the

'1



sampling rate of the observed data. Therefore. it is important to

monitor convergence closely, and to stop the iterations when the minimum

error solution is obtained.

The crudest but perhaps the most widely applied method of

monitoring convergence is to visually inspect each iterative result, and

choose the most appealing one (in some ad hoc way). A second. more

quantitative method involves monitoring the statistics for a minimum

U point. There are some arbitrary decisions to be made about this

technique. e.g., which statisitics to use and what relative weights

should be assigned to these measures. It was observed in these

experiments that a different number of iterations are performed to

obtain the best solution, depending on whether the mean or variance is

considered more important. A third technique is to compare the original

data to the calculated data and iterate until they agree within a

prescribed tolerance. For example. the original projections can be

compared to the synthetically calculated projections over the angular -,

interval where these are both known.

Although the missing cone problem was discussed in this chapter

within the context of computer-aided tomography, it has become

increasingly apparent that many other inverse problems in the fields of

synthetic aperture radar. beamforming sonar. radio astronomy, electron

microscopy and geophysical exploration can benefit from new solutions

and better algorithms to deal with regions of missing data. Therefore,

the missing cone problem represents an important generic problem which

will very likely receive increased attention in future years.

.. . . . . . . . . . . .. . ... '..• ".... " '.-..""'- ". -''''''' '
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4. ANALYSIS OF A JITIER MODEL FOR COORDINATE TRANSFORMATION

P IN SYNTHETIC APERTURE RAAR

In the generation of spotlight mode synthetic aperture radar (SAR)

Simages from digitally recorded data, one of the most computationally

demanding tasks is the two-dimensional interpolation from a polar raster

to a rectangular raster [48]. This chapter analyzes a simple

interpolation scheme that takes advantage of the significant

oversampling of data in the azimuth direction and a 'smart' A/D

converter (sampler). By 'smart' it is meant that the sampler can

perform at varying and controllable rates and that these rates can be

altered dynamically. The interpolation scheme proposed significantly

I',. reduces the computational requirements of a digital SAR processor

[3,49,501.

This chapter is organized in the following manner. First, the

basic spotlight mode SAR geometry relevant to the sampling issues

involved will be presented and discussed. At this point, sufficient

background material and terminology will have been covered to allow a

discussion of other interpolation schemes proposed for this problem.

Next, the jitter model for nearest-neighbor interpolation is presented,

analyzed and discussed. Lastly, some computer experiments are presented

to support the theoretical results and to illustrate the affects of

nearest-neighbor interpolation.

. *
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4.1 Problem Description and Background

The geometry for data collection in a typical spotlight mode

synthetic aperture radar system is illustrated in Figure 4.1. As the

vehicle carrying the radar passes to the side of the terrain to be

mapped, a large aperture antenna is steered so as to keep the beam of

the antenna pointed at some reference point in the terrain. The angle

over which the antenna illuminates the terrain is termed the look angle,

a. At equidistant intervals along the flight path (assumed to be a

straight line), the radar set transmits a linear FM wavepulse with

center frequency f0 " The form of this signal is:

t + Yt2/2 for ItI.T/2 -4

f(t) 0 for ItI>T/2

where y is the FM rate. The value of T (pulse duration) is determined

by ambiguity and resolution requirements. Clearly, T also determines

the bandwidth swept by the transmitter. The received signal, which is

the transmitted signal convolved with the complex reflectivity of the

scene, is mixed with quadrature reference signals [3] and demodulated,

bringing the collected information down to baseband. Consider the two

demodulated quadrature channels to represent the real and imaginary

components of a complex signal. With this interpretation, the data can

be shown to be a portion of the 2D FT of the complex reflectivity of the

target [48].

Refer once again to the SAR geometry illustrated in Figure 4.1.

Due to the finite look angle of the data collection scheme, 2D Fourier

domain data are recorded only over a finite angular region. Further,

+, ,: ., .. ,: . . . . .. . . . _. ..... ~ .. *. . . . . . .. . .+ . - . o
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4.1

the bandwidth (due to the finite T) of the transmitted pulse determines

the span of frequencies for which data are available in the range

direction. The combination of these effects is to constrain samples to

a conical region as illustrated in Figure 4.2.

The center of this conical region is at a spatial frequency W0 ,

which is equal to 4af0/C where C is the speed of light. Minimum and

maximum frequencies in the range direction are determined by the desired

resolution, thus affecting T. Physical design constraints on the

bandwidth of the transmitter and receiver may be the determining factor,

thus determining T and the resolution. In practice this conic section

is a relatively thin strip, the ratio of azimuth bandwidth to range

bandwidth is often greater than 5:1 [51]. Since the data are recorded

in the Fourier domain, a 2D FT must be performed in order to generate an

image.

One very fast method for transforming from the Fourier domain to

the spatial domain is by the use of lenses. Since Fourier transforms -

can be calculated optically with lenses, the FT inversion can be

accomplished almost instantaneously. Additionally, that the data occupy

a conical region is of little significance to optical processors. It is

easy to compensate for this data format by the proper design of the

optics and recording techniques. Harger [3] presents a theoretical "

discussion of optical methods. In [51,52] some hardware details are

presented that illustrate this type of SAR processing. .,

Because the exposing of film and the later development requires an

off-line and time-consuming process, a real-time processor incorporating

this technique is not feasible. Since the motivation of this work is to

%/
- -.% .4. .. . ..- J. , . , .- , . .. .- -, . . .\ .. . . --.. - .,. -.- , , ,- , - .: ., - . . ,
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develop techniques for real-time SAR processing, further attention is

centered around digital techniques for SAR imaging. From the above

discussion, an important process in generating the image is the

transformation from the 2D Fourier domain to the 2D spatial domain.. One

efficient method of accomplishing this transformation is to employ FFT's

(or other fast realizations of the DFT). Further, in order to employ

digital techniques the data must be sampled. If the two data channels

representing the real and imaginary parts of the complex Fourier domain

data are sampled at uniform rates, then samples of the 2D FT are

obtained on a polar raster [53]. Since FFT's and most similar

techniques require samples on a rectilinear raster, some sort of

* '- . interpolation is required to change the format of the collected data.

The region of interpolation is typically taken to be the largest

rectangular region that can be contained wholly in the conic region over

which data are available. This is illustrated in Figure 4.2. In

general, 2D interpolation is computationally expensive, and in SAR

processing it is a primary data processing bottleneck. The aim of this

chapter is to investigate an efficient method for simplifying the

interpolation problem. Next, a review of present methods as well as

some recently proposed techniques will be discussed.

One of the more obvious methods for transforming from a polar to a

rectangular format is to perform a 2D interpolation. A fairly simple

algorithm would employ a first-order inverse-distance technique. In

[153], Schwartz discusses this technique and points out that sensitivity

to noise is a major drawback. Further, since this technique must employ -I

spatially varying coefficients, a constant coefficient FIR filter

% . .. -........
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implementation is not possible. As a result, this simple interpolation

scheme is computationally expensive. As illustrated in Chapter 3,

polar-to-rectangular interpolation is both ill-posed and, for spatially

varying interpolation points, quite expensive. Consequently,

significant effort has been spent attempting to circumvent one or both

of these problems (ill-posedness and/or spatial variation).

In perhaps the simplest technique for polar-to-rectangular

interpolation, the polar raster is assumed to closely approximate a

rectangular raster. Interpolation to a rectangular grid is performed by

selecting the polar sample nearest the rectangular point. In this

method, called 'nearest-neighbor' interpolation, the only calculations

"* involved are those for determining the nearest neighbor. Further, if

the look angle of the polar grid is small, then the polar raster is a

good approximation to a rectangular grid and the error introduced by

nearest-neighbor interpolation is quite small. As pointed out in [53],

this technique is rather insensitive to noisy data. However, if the look

angle is not small, this technique can cause severe misregistration of

targets, as well as significant loss in resolution.

A method that avoids the spatially varying problem is to
-I.

" interpolate from the available polar grid to a finer polar grid. Since

the new grid points are regularly spaced with reference to the original

raster, a FIR filter with constant coefficients can be designed to

perform the interpolation. While the resulting polar grid points are

not on a rectangular raster, on the average, these polar points lie

ieu'i closer to a rectangular grid point than prior to interpolation, and the

error induced by performing a nearest-neighbor interpolation will be

!
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smaller than with the original data. Mersereau and Oppenheim discuss

this idea in [4], where they design a specific interpolator to optimize

some feature in the final image. In [25], Stark et al. proposes an

exact scheme for interpolating to a finer polar grid. This technique

assumes two facts: 1) Data are band-limited in angle for each circular

arc and 2) A complete polar grid of data are available. While the first

requirement may be essentially met (as discussed in Chapter 3). the

second requirement is clearly not satisfied by the conic region.

A different technique employed for polar to rectangular

interpolation is to perform two 1D interpolation steps. In one

realization, interpolation is performed along radial lines to obtain

samples on a keystone format (see Figure 4.3) followed by interpolation

along each horizontal line to the desired rectangular grid point. While

this technique requires spatially varying coefficients, the computations

-' . involved are generally fewer than required by a non-separable 2D spatial

varying interpolator. In some implementations, the interpolation is

'-'S only performed in one direction with nearest-neighbor interpolation

performed in the other direction.

So far in this discussion it has been assumed that the data are

, originally sampled on a polar raster. In the technique to be discussed

next, the data are either sampled on a keystone raster or interpolation

has been performed to transform the data to a keystone raster. From a

practical standpoint, sampling data on a keystone raster is not

difficult. With data in a keystone format, either 1D or nearest-

neighbor interpolation can be performed to obtain the data on a

rectangular raster. A significant, but rarely exploited aspect of SAR

:-;€_2~~~~~~~~~~~~~~~~~~.'_.2 . ". ".'."..'-.".--:...;. - ... x.,--....-....- ....... ....... ... . . . .
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is that the azimuthal data are usually highly oversampled, typically by

a factor of 5 or 10 to 1 [501. This oversampling is present independent

of whether the data are on a polar or keystone raster and is in addition

to the wider azimuth bandwidth. The oversampling is illustrated in

Figure 4.4 a) and 4.4 b).

Most SAR processors perform a presumming or decimation operation on

the azimuthal data, during real time collection, in order to reduce the

bulk storage requirements to more manageable levels [50]. In either

case, only the resulting data are available for later use and the large

azimuth to range bandwidth ratio remains. The presummer usually takes

the form of a simple adder (averager). In other cases, the data values

are scaled by a window, Hamming for instance, prior to the presum

operation in order to achieve some desired results. The computations

required to perform this windowing often restrict its use. What is

proposed is an adaptive presummer that sums groups of values (along the

range bin in question) around the rectangular grid points to which a

M " nearest-neighbor interpolation step is going to be performed. This is

illustrated in Figure 4.4 a). Since the oversampling is usually quite

high, an original keystone sample will be available quite near a

rectangular grid point. In the adaptive presummer case, the maximum

position error between rectangular and keystone samples is one-half the

keystone sampling interval. Employing the normal method of summing each

group of Q points as they arrive will generate a maximum position error

of one-half the rectangular sampling interval. The obvious result of

adaptive presumming is a reduction position error by a factor of Q.

This technique can also be employed in the polar-to-rectangular case

. . . . .. . . .
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where the adaptive presumming is performed along the circular arcs in a

manner to generate samples nearest the rectangular grid points. See

Figure 4.4 b). Again, if the included angle (look angle) is small, then

the error due to nearest-neighbor interpolation may be negligible.

4.2 Jitter Analysis

In this section,a model is derived to characterize the nearest-

neighbor interpolation scheme. This error will be referred to as

jitter noise in the sense that the interpolated value can be considered

to be the exact value with some noise signal modifying the value. As

Schwartz pointed out in [53], nearest-neighbor interpolation is fairly

insensitive to noise. Therefore, this technique should be fairly robust

with respect to noisy data. The purpose of this anaylsis is to

characterize the jitter induced noise and derive a model that accurately

reflects the effects of nearest-neighbor interpolation in the keystone

case.

Since the jittering is occurring in only one dimension, the

following analysis will be for only one dimension, i.e., for a specific

range bin. Denote the jittered samples of the :T as R (wk) where wk is

discrete frequency. The jittered samples can be considered to be the

correct rectangular samples, R(wk) modified by some additional signal.

This modifying signal is assumed to be due to the small error in

position between the rectangular and keystone samples. Using A to

9' represent the error in position or jitter distance, then,

-p ! %%
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R3 (wk) , R(wk) + R'(Wk)Awk, (4.2)

* where R'(w k) is some measure of the slope over the jitter distance.

What (4.2) says is that the jittered signal, or noise, is approximately

equal to some measure of the slope (to be jittered) times the jitter

distance.

One of the purposes of this analysis is to derive a signal

independent model for characterizing some aspects of the jitter noise.

In the case of trying to derive a signal independent relationship, the

-.best that could be hoped for is some sort of bound on the error.

' Bounding R'(wk) by the maximum value of the slope, a bound on the

. maximum jitter noise amplitude, NJ(wk), is

N"(Wk) = max[R'(wk)]max[Awk1. (4.3)

Substituting (4.3) into (4.2), *

RJ(wk) R(W) + max[R'(wk)]max[Awk], (4.4)

where max[Awk] represents the largest possible jitter distance, one-

nhalf the distance between keystone samples. A better model that may

not strictly bound the jitter error, but will be more representative of

the signal value, is obtained by substituting the average jitter

.' )distance for the maximum jitter distance. In this case,(4.3) becomes

NY'(wk) = max[R'(wk)]E{Ak}. (4.5)

Employing the above analysis, the derived model will be composed of

two factors. The first factor is the expected jitter (interpolation)

distance as a function of the oversampling rate and other terms. Once

. this value is calculated, if a bound can be placed on some measure of

the rate of change in the sampled Fourier domain, then an equation can
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be derived that models the variation of this measure of the jittered

signal. First, a model for the expected jitter distance is derived.

Referring to Figure 4.3, let M represent the total number of

keystone samples on each horizontal line. This value of M is equal to

" QN, i.e., the product of the number of rectangular samples times the

oversampling rate, Q. The term 4r denotes the sampling interval in the

vertical direction and a is the look angle. With these definitions, the

separation between keystone samples is

S = 2nrtan(a/2) (4.6)
MA

where n represents the range bin (a horizontal line of data). Assuming

that the distance between rectangular grid points is equal, then any

" given rectangular point is uniformly distributed in the interval between

two keystone points. With this assumption, the average jitter distance

"" Jd as a function of range bin, n, is

d ntrtan(a/2) (4.7)
d 2M (

This equation assumes a constant azimuth sampling interval for a given

range bin. This assumption is not strictly correct. Equation (4.7) is

derived from the fact that the jitter distance is one-half the

separation of the keystone samples, and on the average, the misalignment

.. will be the keystone separation divided by four. Equation 4.7 can

• easily take into account oversampling that may be present in a specific

system.

In reference to (4.2), two different measurable quantities are

-4
apparent. Either the magnitude or the phase could be employed as a

measure of the signal variation. The measure proposed in this chapter
, '.2,

. . . . . .. . . . . . . . . . . . . . . . . .. /
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is the phase of the complex signals. The reasons for using the phase as

a measure follow. One interpretation of the source for the high

resolution that SAR systems apparently provide is that the phase is the

single most important factor. In work indirectly related to SAR,

Oppenheim and Lim [54] have demonstrated the importance of phase in

reconstructing images. In another interpretation, the phase component

in SAR data can be considered to represent the relative times at which

reflected radar pulses are received. These relative receive times

represent the spatial distance of the targets to the transmitter. By

correlating the reflections over the look angle, the specific targets

are resolved; the relative signal magnitudes are not critical to the

resolution. Employing the above reasoning, phase can be seen to be the

critical factor in SAR imagery. Mathematically, this can be presented

as a stationary phase approximation [26]. If a complex function has a

fast varying phase and a slowly varying magnitude, then the integral

(Fourier transform) of this function is primarily due to the effects of

the phase. In SAR systems, the phase of the complex data is in fact

varying rapidly with reference to the magnitude; consequently, a

stationary phase approximation would indicate that the phase of this

signal is the important quantity for image generation. For these

reasons, a measure of phase more accurately reflects the effects of

jitter than a measure of magnitude.

In order to derive bounds on the rate of change in the phase of SAR

data, the effects of sampling on the complex data have to be understood

" first. To simplify matters, sampling theory will be discussed with

reference to a one-dimensional signal; the results clearly apply to the

-- - - - -
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2D case. Assume that the desired resolution in the spatial domain is 6

(meters). In order to resolve this cell in the spatial domain, the

"" Fourier domain must have a spectral bandwidth of at least 4n/8

(radians/ meters). For a map size of X (meters), sampling theory states

that the Fourier domain must be sampled at a minimum rate of n/2X.

- These two relationships imply that 4X/6 complex Fourier domain samples

are required. Since in the examples to be considered here the FFT

length will be the dominating factor (fixed), the above relationship,

i.e.,

N>4X/6 (4.8)

establishes either the resolution or the image size given the other. In

practice, the factor limiting the image size is often the beamwidth of

the antenna used to illuminate the scene. Using the above

relationships, a bound can be placed on the maximum rate of change (the

slope) of the phase. Consider a target that is at the extreme edge of

the scene. This target can be considered to be an object at the center

of the scene that has been phase shifted (by multiplication with the

complex exponential enX/2 ) to the edge of the scene. The phase of this

complex exponential generates the greatest slope in the phase of the

' complex data. Ignoring the effects of the complex reflectivity of the

target, uncompensated motion of the aircraft and other factors that

influence the recorded data, and thus the phase, then the phase will

*[ -change by a factor of n over a period corresponding to the highest

frequency of the sampled data. Since 8 and X are constrained by N and

sampling theory, it is clear that the highest frequency represented by

X, is sufficiently sampled. Therefore, at the minimum sampling rate

_ ~~~~~~~~~~~..................,., -. .- ............................................ -.-....-.............-.....,.....
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specified by (4.8), the phase is sampled twice over the interval in

which it changes by n. With the sampling rate of the Fourier domain set

at 2n/N6, the minimum period in the Fourier domain is 4W/N6. The

maximum average slope of the phase is then

max (4.9)
i-:'= (f /• 24 9

Using the equation for mean jitter distance, (4.7), a relationship for

the mean phase jitter can be obtained. Since the jitter distance is a

function of the range bin, denoted by n in equation (4.7), assume that

the calculated value for the jitter at W0 (represented by some value of

no say nl) is a fair value for the mean phase jitter over all the range

'.- bins. Then

NS ~8 Wtan(a/2)] 6W 0 tan(a/2) (.0

2[(QN-1 J 2Q

where

47= n (4.11)
C 0 "

In the simulations employed later in this chapter, the complex array is

assumed to be square, not rectangular. As a consequence, the range

bandwidth determines the azimuth bandwidth. Further, the actual look

angle of perhaps 10 degrees is dominated by the modified (imposed)

azimuth bandwidth which corresponds to a look angle of approximately one

i degree. For this case, the jitter distance can be calculated to be

.L mini(4.12)

4where

.d

* .*

&- - A..-
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0  26f 0
f0 - (4.13)IW . 26f0-c"

* ." Thus the maximum phase jitter error is approximately

"[ 2f 0 11N 2NV 6f0  (4.14)
'= ~ 6f0 -c L(W= l)- T Q(26foC).

If a value of tan(a/2) corresponding to the modelled azimuth bandwidth

is employed in (4.10), then equation (4.14) is obtained.

Two modifications need to be made to equations (4.10) and (4.14).

In the analysis it was assumed that the final square rectangular raster,

after interpolation, barely met the necessary sampling requirements.

However, in many cases the final Fourier data will be oversampled. The

original analysis showed that as a consequence of barely meeting the

sampling requirement, the phase changed by t over the sampling interval.

If, in fact the final Fourier raster does oversample the data by a

factor of K, then the phase change will be n/K between samples. The

second factor that needs to be considered is that the above anaylsis

considered the largest phase shift to be due to the largest spatial

offset. In the assumed square region under consideration, this phase is

a factor of 1.414 larger (because of the diagonal distance) than

originally discussed. These effects modify (4.10) and (4.14) to:

E{O} 0.7076W0 tan(a2) (4.10a)
KQ

and

Ef0j 2.8286nf0  (4.14a), ~MM = K(foC)•

In the next section, the validity of the jitter distance model will be

9,I
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verified and relationships between the theoretical jitter and measured

phase jitter will be examined and discussed. Further, a simulation is

provided to demonstrate the affects of nearest-neighbor interpolation.

4.3 Experimental Results

Three experiments are discussed in this section. The first is a

program that generates a keystone raster and a rectangular raster and

calculates the average jitter distance introduced by nearest-neighbor

interpolation. Results of this experiment will be presented first to

verify (4.7). In the second experiment, data are generated in a

- keystone format and nearest-neighbor interpolation is used to transform

this data set to a rectangular raster. The jittered keystone values,

now in a rectangular raster, are compared to the theoretical values of

the 2D FT obtained by sampling on a rectangular raster. Average phase

* jitter is calculated and compared to the theoretical values. Further,

the image generated by the jittered keystone values is compared to the

." -,image obtained from the correct rectangularly sampled data. The
* -4

* -expected result of higher oversampling rates generating better images

will be verified. The third experiment attempts to generate the

jittered FD data by employing the theoretical model for jitter, equation

(4.2). Correct data are corrupted by the use of noise as predicted in

equation (4.2). Images generated by this experiment are compared to

those generated from the real jittered data. The purpose is to further

7 verify the validity of the jitter model for nearest-neighbor

5" -5. interpolation. A result of these experiments is to demonstrate the

.5o.... -..5.....- ............ ................... ..-*~-~,.. . .. ~.-. -.. ,., .. -.- ,.,,, . .-...-.. ....... ,.. • .... . ... . ,.. ,- 5 .. • *_..-..,,. ... . . ...... -. 3 , . 5.,', ,'
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applicability of nearest-neighbor interpolation when there exists

significant oversampling and adaptive presumming is employed.

Table 4.1 contains some results for the theoretical jitter distance

mean, equation (4.7) and the actual measured mean found by computer

simulation. It can be seen that the model provides an excellent

approximation to the measured values. Further, the model appears to

provide a very good estimate of the jitter error for nearly any

combination of parameters. Other experiments have shown that even at

large look angles the model and measured values differ by at most

approximately one percent.

Table 4.1 Measured and Theoretical Jitter Distance.

Look Angle Eq. (4.3) Simulation Eq. (4.3) Simulation

Q=1 Q=1 Q=7 Q=7

200 0.1106 0.1106 0.0158 0.0157

300 0.1681 0.1676 0.0240 0.0238

400 0.2284 0.2276 0.0326 0.0323

500 0.2926 0.2916 0.0418 0.0413

600 0.3623 0.3610 0.0518 0.0512

As a preliminary step to discussing the results of the SAR

simulation, some of the implementation details need to be described.

The model employed in this work starts after the mixing and demodulation

stage and just prior to sampling. Starting at this point allows a

flexible sampling scheme, keystone or rectangular for instance. Since

the two data channels available after the demodulation are assumed to

represent the real and imaginary components of the 2D FT of the scene, a
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method is required for generating these data. Two significantly

different methods were considered. In the first technique, the 2D DFT

. (computed with FFT's) is calculated for some arbitrary image and samples

of this data set are employed in the simulation. There are two major

problems with employing this model. Both of these problems arise from

the desired ability to obtain samples over the conic region for

arbitrary frequency offsets. In order to simulate relatively large

frequency offsets, the originally calculated DFT must be orders of

magnitude more dense than the sampled raster. This is because the DFT

is constrained to lie in a 0 to 2n region and in order to accommodate

the sampling requirements around the offset mapped (by the sampling

rate) into 0 to 2a, the data will have to be very dense. This high

density implies that very large FFT's will have to be used in the

calculation of the data set in order to accurately support a sampling of

this data set over a small subset of the 0 to 2n region. A further

problem is that using FFT's implies that samples are available only on a

rectilinear raster. Therefore, if samples are required on a keystone or

polar grid, interpolation will be necessary. Since the objective is to

obtain these original sample values with as little error as possible, a

very accurate interpolator would be required.

In the second method, an image is constructed from a set of

Za rectangles. These rectangles can be of arbitrary size and can be

, ,positioned anywhere in the image scene. Since the 2D FT of a rectangle

can be calculated exactly (the product of two sinc waveforms) and by

introducing a complex phase, •Jx, the exact 2D FT of an arbitrarily

located rectangle can be expressed in a closed-form expression. By
-.I. o

",- . , .,. - . . , . . , . ' -,' - . . , . . . . - . . . . . - . + . ' . . . . - -. . ' . . . . ' . ' . . . . .• • . '1+ - . . + , . . . . .: . " . - . .. .
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superposition, any combination of shifted rectangles can be used to

construct the image. The final result is a sum of sinc waveforms, each

multiplied by a complex phase, representing the relative spatial

offsets. Because this model is continuous, it is not biased towards any

specific coordinate structure. Given an arbitrary position in the wl,w 2

plane, the exact complex value of the 2D FT of the image can be

calculated for that point. Thus by designing an appropriate method for

generating w1 ,w2 values, exact samples of the 2D FT of the image can be

obtained on any desired raster. This is the model employed in the

following simulations. This model also accurately reflects the fact

that prior to sampling, the two demodulated data channels contain

continuous data. The major disadvantages of this technique are: 1) The

class of images is restricted to those that can be constructed from

rectangles. Admittedly, any image could be represented with arbitrary

accuracy in this manner, but the large number of independent sinc

waveforms needed to represent this image may be prohibitive and 2) The

computations required to evaluate this sum of phase shifted sinc

waveforms for each sample point can become quite large.

In order to calculate the phase jitter, sample values of the 2D FT

of an image are obtained on a keystone format (to some specified

oversampling rate) and sample values of the 2D FT of the image are also
'oO..

calculated for the rectangular raster. Then after finding the keystone

sample that is the nearest-neighbor to a specific rectangular point, the

phases of each are calculated and the difference is stored. This is

performed for each point in the rectangular grid and the average value

of all the stored phase errors is calculated. This value is displayed

. . . .. ...
t :/ .: : : ; ' . . . ? ? .? : ? ? .. ,-.-?- .-.-,.-.;.-:. .-,- ,- _ ...:- . ];. ,i:- . . J
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in Table 4.2 for various keystone oversampling rates and as a function

0 of different required resolutions and, because the FFT length is not

altered, different rectangular sampling rates. Also, in Table 4.2 are

the theoretical phase jitter values calculated from equation (4.10a).

The theoretical values are for the center range bin only, not the

average over all range bins. The error introduced by this assumption is

quite small. In Figure 4.5 is the image employed in this analysis.

Inspection of these results indicates that the theoretical value

tends to bound, but not strictly, the average phase jitter error.

Reasons why this bound is not strict follow. Since the jitter distance

- - model is quite accurate, the error must be related to the bounds on the

":e :phase slope. Although as pointed out earlier, using the average jitter

* distance is also a cause of error, at least in terms of strictly

bounding the error. The primary source of error in the phase slope

-.. ***. model is the assumption that the maximum phase slope can be

approximated by N6/2. To obtain this result it is assumed that the

phase changes linearly over the sampling interval. Clearly, this will

not in general be true. The true maximum phase slope will be modulated

by a function of the data. As an example, in the image used in this

example, if the rectangle at (x,y)=  (13,13) is removed, then the

measured phase jitter for 6-10 meters and a keystone oversampling rate

of 5 is 0.474. A small change in the image induces a large change in

the measured statistics of tne image. Since the model doesn't account

for specific features in the image, the predicted phase jitter error is

constant while the measured values change, sometimes quite substantially,

as noted above. However, equation (4.10a) does satisfy the objective of

%N

4.:
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Table 4.2 Measured and Theoretical Phase Jitter Error,

Resolution Rectangular Keystone Theory Measured

Rate, K Rate, Q

5.0 1.0 3.0 1.527 0.763

5.0 1.0 5.0 0.916 0.758

5.0 1.0 7.0 0.654 0.756

5.0 1.0 9.0 0.509 0.754

10.0 2.0 3.0 0.752 0.408

10.0 2.0 5.0 0.451 0.401
.0.0 2.0 7.0 0.322 0.403

10.0 2.0 9.0 0.251 0.403

* - 20.0 4.0 3.0 0.373 0.128
- 20.0 4.0 5.0 0.224 0.118

20.0 4.0 7.0 0.160 0.115

20.0 4.0 9.0 0.124 0.115

. .
;. .. -.

,*74
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Figure 4.5 a) Ideal scene #1.
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obtaining an equation that approximates the phase jitter.

In Figure 4.6a is the actual image generated by sampling the 2D FT

of scene #1 (Figure 4.5a) on a rectangular raster. The desired

resolution is 10 meters and the FFT length is 64 for an effective

rectangular oversampling rate of approximately 2. In Figures 4.6b -

4.6d are the results of sampling on a keystone raster with varying

oversampling rates. The expected result is that higher oversampling

rates should produce higher quality images, i.e., less phase jitter

noise. These results appear to support this contention. Experiments

with scene #2 using this model have generated similar results. These

are illustrated in Figures 4.7a - 4.7d.

The third experiment really consists of two parts, in which two

different noise models are used. In the first part, a noise model

corresponding to (4.5) is used. This corresponds to a signal

independent bound on the slope of the FD data. Since the bound is

independent of the signal, this model will generate uncorrelated noise.

From (4.7), the expected value of the jitter distance is J

Substituting Jd and the constant K representing the maximum slope of the

FD data, (4.2) can be rewitten as

RJ(w) R(wk) + K~d• (4.15) "'

Breaking (4.15) down into the real and imaginary components, (dropping

the wk dependence)

[sr + jsJ] [Sr + Jsi] + [K.Td + jK d]. (4.16)

the subscripts r and i denote the real and imaginary components of the

complex value. Equation (4.16) also represents the method of
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* Figure 4.6 a) Reconstruction of #i1 Figure 4.6 b) Reconstruction of #1

from rectangularly sarpled cata. from keystone sampled data, Q=l.
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Figure 4.6 c) Reconstruction of #1 Figure 4.6 d) Reconstruction of #1

from keystone sampled data, Q=3. from keystone sampled data, Q=5.
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Figure 4.7 a) Reconstruction of #2 Figure 4.7 ) Reconstruction of #2
from recstneual sampled data =. from keystone sampled data,Q1
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" implementation. Each real and imaginary sample of the rectangularly

.- sampled FD is modified by the addition of a random number, KYd, where

* - is independent for the real and imaginary components. Jd is
od

- independent and uniformly distributed over one-half the keystone

sampling interval. The expected result of this experiment is that the

final image will appear to be that obtained from the unjittered data

" with noise added to the image after the 2D FT. This is due to the

linearity of the FT and the fact that the noise is uncorrelated to the

signal. The results illustrated in Figures 4.8b and 4.8d are clearly

" •quite different from the results in Figures 4.8a and 4.8c.

The major reason for this discrepancy is that the noise model

" ,employed in this experiment is uncorrelated to the signal. If the

" ' -. signal independent model is used, then a constant amount of noise is the

-"- assumed jitter error, even if there is no signal. Clearlywhen the

signal is jittered, the amplitude of the noise is related to the signal.

In equation (4.2), this relationship is the derivative of the signal.

The model in (4.16) is a realization of the signal independent bound

, •employed in experiment two. In order for that model to be independent

of the signal, an uncorrelated model had to be assumed. This is the

source of using the maximum possible phase shift as an approximation to

the greatest slope. An improvement to this model would include some

measure of the signal. Although this technique is impossible for

" -general analysis, it can be employed in simulations to test the validity

- - of the jitter model.

*" • 4, An improvement over the signal independent approximation of (4.3)

would be to use, as tae measure of the slope of the signal, a

_ . - . . . . . . . .. . . .. . . . .* °
, - o e~. . .. . .. .. . . . . . . . . . . . . . . . ......• . " " : . . .. .. . . * . . .. -. '.



O' 146

W a* a ma

agim

Af ADE + "E S,-- -
.8 aU a E p -__...- --- __.-- . .a " ;

So, . . a

-I. . . •a "*--
aa

A aU
1% %

a a

-El-

, Figure 4.8 a) Reconstruction of #1 Figure 448 b) Reconstruction of #1 ;

v- from keystone sampled data, Q=5. from rectangularly sampled data
:i::'..'...corrupted by additive noise.

S an or

If

a Uas

,, WE W.

0 47

Ii m- I a

a i -.=;. a U - - "

a a

,N ' .. Figure 4.8 c) Reconstruction of #2 Figure 4.8 d) Reconstruction of #2- "_'

, from keystone sampled data. 0=5. from rectangularly sampled data
corrupted with additive noise.

3A _A

LS -- * P.- -

:P , -

Figue 48 a)Recnstrctin of#1 igue 4. b)Recostrctio of#1

r . +' """-, . V.'"7 ,, "..''" ""•from"."'.+"; V key'ston "','"-""" "'" "" """e "" ""'""'"" sa"ped'd"a" '"'""om e"ta gula ly s mple dat



0 147

differential. With this model, (4.5) becomes

NT(wk) = Jd[R(wk) - R(wkl)] (4.17)

which is certainly a better approximation to the instantaneous slope

than a bound on the maximum slope is. Note that Jd has been substituted

in for the expected value of the jitter distance. This model can also

be expanded in terms of its components, as in (4.16), and this

represents the method of implementation. As before, Id  is independent

of the signal. The two values used to modify the real and imaginary

components are also independent of each other and Id is uniformly

" distributed over one-half the keystone sampling interval.

The results of this experiment are illustrated in Figures 4.9b and

4.9d. Comparing these results to those in Figures 4.9a and 4.9c, very

good agreement is achieved in both examples. These pictures are quite

comparable, even to the degree of smearing present in the targets. A

conclusion is that the correlated noise model, (4.17), quite accurately

reflects the affects of jittering the data.

4.4 Conclusion

•7

It was shown that the phase jitter model provides some measure of

the actual phase error introduced by nearest-neighbor interpolation.

That the model employing a bound on the maximum slope is scene-

independent should allow its use as a general design tool for digital

' SAR systems. Some of the features of this phase model follow. First,

the use of phase error as a measure of data quality in SAR has been

shown to reflect some aspects of image quality fairly well. Second,

• .4. ' '"." ,. '' 2 ' " ' '''= .-- . " ' ' " * " " " '' . '' ' " " ' ''' - '\ '
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Figure 4.9 a) Reconstruction of #1 Figure 4.9 b) Reconstruction of #1
from keystone sampled data, Q=5. from rectangularly sampled data

corrupted by multiplicative noise.

la A-

SFigure 4.9 0) Reconstruction of #2 Figure 49d) Reconstruction of #2 [

from keystone sampled data, Q-5. from rectangularly sampled data

., corrupted by multiplicative noise.
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-- equations (4.10a) and (4.14a) do provide qualitative relationships

P between various parameters and the expected phase error. The last two

experiments provided further verification of the reliability of these

models. The important result is that a correlated noise model quite

accurately reflects the affects of jittering the data. While the

correlated model was shown to be quite good and the independent model

appeared to be rai.ker poor, it should be noted that these results

reflect a rather fine level of detail in the image. In a real SAR

system, the average target will not be Ls relatively large as in these

simulations. Further, sampling requirements will likely reduce the

level of jitter noise below that simulated in these experiments. In

this case, the uncorrelated, signal independent noise model may be

satisfactory for modelling the affects of jittering.

As a result of this work, it has become apparent that flexible

sampling schemes can greatly reduce the computational requirements of a

digital SAR system. In cases where flexible sampling is not available,

attention should be paid to the selection of data formats. By the

intelligent choice of rasters, the computational burden, normally
.°

imposed by coordinate transformations, can be greatly reduced. An area

- . "requiring further work is the choice of optimal sampling strategies and

,4.-. data formats to minimize both the interpolation error and computational

requirements.

.., .. :

9. '
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5. CONCLUSION

This thesis considered three distinct but related topics. A

purpose of this conclusion is to "draw this work together in a more

cohesive manner. In Chapter two, some results concerning the effects of

discretization on Gerchberg's and Papoulis' algorithms were studied. It

was identified that a major problem in any implementation of these

techniques is the finite number of samples of data, or filter

coeffcients, that can be stored and manipulated. An obvious result of

this finite implementation is the inability to perform ideal filtering.

Performing this non-ideal prooessing introduces error into the resultant

signal. Because these extrapolation techniques are recursive, error

produced in one pass is modified, or compounded, in the next pass.

J% Further, even in the continuous case, these algorithms obtain the MNLS

solution only after an infinite number of iterations. The net effects

of employing finite records and performing only a finite number of

iterations are to produce convergence behaviour as illustrated in Figure

1% 2.5.
-*.

The emphasis of Chapter two was to characterize the behaviour of

Gerchberg's and Papoulis' algorithms as a function of the record lengths

employed in the realization. Two key results were obtained from this

anaylsis. First, both algorithms can be characterized as contraction

" " mappings for any finite record length. The implication is that for any

initial Suess, the algorithm will converge. Second, for most realistic

applications of these techniques, the optimal solution is obtained after

a relatively small number of iterations in comparison to the number
",0

°'V.
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required to approach the fixed point. From a practical standpoint. this

implies that the algorithm should not be allowed to converge to the

. fixed point, but rather, be terminated after a much smaller number of

iterations. Precise means of determining when this optimal solution is

obtained and the quality of the extrapolation have not been addressed

and offers one area of further study.

A motivation for studying these techniques was the desire to employ

these and similar methods in the missing cone problem. As pointed out

in Chapter three, other researchers had observed convergence behaviour

similar to that in the 1D case. Observations on early implementations

of PSA also generated similar results and motivated the detailed study

of Gerchberg's and Papoulis' algorithms. The extension of the iD

results to the 2D case supplies a heuristic explanation for the

convergence behaviour observed in both the algorithms proposed in this

work, as well as in other techniques. Further, knowledge of the

convergence behaviour aided the selection of the optimal solutions.r

Results published in Chapter three illustrate the degree of

recovery possible by employing the PSA and AIM algorithms. As some of

the examples indicate, usable reconstructions can be obtained with as

S"little as 35% of the data. An important feature of these techniques is

.- that they require operations on the order of the same number of

operations required for the initial reconstruction. Also of

significance is that while techniques proposed by other researchers

require O(N") operations, PSA and AIM need only approximately O(N3 )

operations and produce superior results.

44o
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During the study of Gerchberg's and Papoulis' algorithms, other

researchers published results rediscovering some older extrapolation

methods. Some of these methods, particularly those proposed by Jain and

Ranganath, provide a means of obtaining the exact MNLS solution as

opposed to the approximation generated by Gerchberg's or Papoulis'

algorithm. Incorporation of Jain's methods into the PSA and AIM

algorithms is one possible extension of this work. It is conjectured

that these improved algorithms would produce results superior to those

published here.

One possible extension of the PSA and AIM algorithms is to

situations where the missing cone consists of several unconnected

regions, i.e., several missing cones. The algorithms as described in

Chapter three could very readily handle this data format. The only

modifications required would be a more flexible indexing scheme for the

substitution of known projection (or Fourier domain) data. Another

extension of PSA and AIM is to the data geometry present in the SAR

case. In fact, the limited data situation illustrated in Figure 4.2 was

the original motivation for studying tomographic reconstruction schemes,

and consequently, the missing cone problem. At present, other

S. researchers are applying tomographic concepts to the SAR case.

Considering the far superior performance of the convolutional-

backprojection reconstruction technique over the direct Fourier method,

,- it seems reasonable to apply CBP techniques to the SAR case. An obvious

extension to employing CBP in SAR is to apply extrapolation algorithms

similar to PSA and AIM as a means of further improving the resolution in

SAR systems.

S.. 
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